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Virtualization is an inexpensive and convenient method for setting up software test environments. Thus
it is being widely used as a test tool for software products requiring high reliability such as mission crit-
ical cyber-physical systems. However, existing virtualization platforms do not fully virtualize the battery
subsystem. Therefore, it is difficult to test battery-related features of guest systems. In this paper, we pro-
pose Virtual Battery, a battery virtualization scheme for type II full virtualization platforms. Virtual Bat-
tery takes the form of an ACPI-compatible battery device driver dedicated to each virtual machine, which
virtualizes a target system. Through Virtual Battery, developers can easily manipulate the charging and
battery status of each virtual machine (VM), regardless of the existence or current status of the host sys-
tem’s battery. In addition, Virtual Battery emulates the behavior of batteries by discharging the virtual
batteries according to the resource usages of their VMs. This feature enables VMs to act as battery
resource containers. Three case studies demonstrate the effectiveness of the proposed scheme.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

To extend battery lifetime and improve the user experience,
most modern operating systems (OSs) employ low-power operat-
ing modes that change diverse system behaviors according to bat-
tery status, such as the charging/discharging condition and
remaining energy. In addition, to protect user and critical system
data, most systems automatically save their memory contents to
permanent storage devices, suspending their operations until the
battery systems are recharged. This is called hibernation. As the
importance of battery management in mobile cyber-physical sys-
tems is ever increasing, such battery-related software components
are becoming more powerful, complicated, and error-prone.

Although many debuggers and profilers for application develop-
ment have been introduced, there are relatively few tools for sys-
tem software development; therefore, testing and resuscitating
specific behaviors exhibited by system software or device drivers
remain difficult problems.

Emerging virtualization technology significantly relieves this
difficulty. By making target systems run on virtual machines
(VMs) and by manipulating these VMs, developers can easily ob-
serve the behavioral characteristics of target systems as they react
to hardware status changes [1,2]. In addition, virtualized target
systems enable developers to run multiple target systems or to
have different target OSs on a single development workstation at
the same time.

For a hardware component to be used in a VM, the virtualiza-
tion platform must provide the component to the VM as a virtual
device. For example, a battery subsystem has to be virtualized
and provided to VMs if developers want their VMs to have a bat-
tery subsystem. However, despite the ever-increasing popularity
of battery-powered mobile systems, rechargeable batteries are
not fully virtualized on almost all commodity virtualization plat-
forms, including QEMU [3], Xen [4] and VirtualBox [5]. These plat-
forms typically provide only bridged battery device drivers that
just reveal the host system battery status to VMs.

The lack of battery virtualization or emulation hinders system
software developers from testing their battery-related features,
such as low-power operating modes, hibernation, system status
backup, and energy-aware background job scheduling. For exam-
ple, if the battery status information provided to VMs is directly
transferred from the status information of the host system’s bat-
tery, as in Xen or VirtualBox, repeated cycles of discharging host
system’s battery and recharging it are required to confirm proper
hibernation of the virtualized testing system. Even worse, if the
host system is not battery-powered, developers will have no
means to test battery-related features.

A battery emulation layer for VMs is also useful for end users.
Besides the enormous success of virtualization in servers, laptops
and other mobile computers are currently using virtualization
technology to allow users to run different OSs in a device or to
sandbox unverified applications. In such cases, VMs act as resource
containers that can precisely control the resource usage of
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virtualized systems. However, current VMs have no control over
energy usage [6]. Thus, VMs in mobile devices also require a bat-
tery emulation layer that provides VMs with independent energy
containers.

In this paper, we introduce Virtual Battery, a battery virtualiza-
tion scheme for type II full virtualization platforms that allows
each VM to have a separate and independent battery that can be
manipulated.

The battery emulation layer in Virtual Battery delivers hypo-
thetical information regarding battery capacity, current status,
and more to the VM. Each VM receives this set of information on
its own, and each Virtual Battery can have different data from an-
other. Consequently, VMs appear as independent battery-powered
systems. The suggested Virtual Battery scheme also includes a dis-
charger component that gradually drains Virtual Batteries in pro-
portion to processor utilization by their corresponding VMs.

The remainder of the paper is organized as follows. We propose
the battery virtualization scheme in Section 2 and present two
examples in Section 3. After describing related work in Section 4,
we conclude in Section 5.
2. Our approach

Virtualization technology can be categorized as type I or type II
[7] virtualization, as illustrated in Fig. 1 In type I virtualization, the
VM monitor (VMM) is located on bare-metal hardware. VMs run
on the VMM and access the physical hardware through the
VMM. No OSs are required to run the VMM. By contrast, the
VMM in type II virtualization runs on a conventional OS, which
sees the VMM as a normal application. VMs run through the
VMM and the system access requests from the VMs pass through
the VMM to the underlying OS. The OS actually deals with the re-
quests on behalf of the VMs.

Since the type I approach has less overhead than type II, type I
virtualization technology is currently the de facto virtualization
standard for cloud computing and server consolidation, whereas
workstation, PC and laptop users favor type II virtualization be-
cause the roles of VMs in those systems are subsidiary to the main
OS or system that the VMM runs on. In this research, we focus on a
battery emulation layer for type II virtualization.

Most modern OSs monitor and control power sources through
the advanced configuration and power interface (ACPI) [8]. ACPI
is an interface specification that facilitates power management of
both peripheral devices and entire systems. ACPI includes stan-
dards for power management and configuration of hardware com-
ponents, plug-and-play devices, and diverse system event
handling. Battery management is also a function provided by ACPI.

An ACPI-compatible battery system has an embedded controller
interface that communicates with a standard ACPI driver [9]. The
ACPI driver collects a set of information, including the designed
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Fig. 1. Two approaches
capacity, latest fully charged capacity, and remaining charge of
the battery system. The driver also provides interfaces to adjust
low-battery warning trip points through the controller so that
the controller signals when the battery discharges below that
point. In the case of Linux, the standard ACPI driver collects current
values for capacity, voltage, temperature, and many other mea-
surements. This information is regularly updated in human-read-
able files in the proc file system.

Virtual Battery, our battery emulation layer, is designed to be
ACPI-compliant so that any OS with ACPI battery drivers can easily
accommodate it. In addition, Virtual Battery is targeted for full vir-
tualization platforms so that guest OSs do not need to be modified
to use it. To satisfy these requirements, the prototype is designed
to fit into VirtualBox [5], which is an open-source, type II full virtu-
alization platform.

In general, VMMs are responsible for providing virtual I/O de-
vices to VMs. There are two approaches to virtualization of I/O de-
vices: a virtual device can be implemented either as an emulation
of a physical device or as a direct pass-through of a physical device.
While VMMs employ both of these approaches, depending on the
device characteristics, ACPI battery drivers are currently imple-
mented for direct pass-through of selective battery status informa-
tion to the host system batteries.

As illustrated in Fig. 2(a), the ACPI driver of VirtualBox is imple-
mented as two separate drivers: a front-end driver and a back-end
driver. The front-end driver is embedded in the VM code, while the
back-end driver is located in the VMM code. The front-end driver
merely transfers I/O requests to the back-end driver, which actu-
ally handles the requests in the host system. The ACPI drivers of
guest OSs recognize the front-end driver as a standard ACPI
controller.

Because the ACPI driver simply transfers status information for
the host system’s battery, all VMs always share the same informa-
tion. To provide independent battery status to each VM, the back-
end driver manages per-VM battery status information as illus-
trated in Fig. 2(b).

A part of the Virtual Battery emulation layer is also included in
the back-end driver. This creates a Virtual Battery file that contains
information about fully charged capacity, present remaining
capacity, current voltage, and many other measurements when a
VM is initialized. Each VM has its own Virtual Battery file. As a re-
sult, the battery status of a VM no longer depends on either the
host battery or the batteries of other VMs.

The function provided by the battery emulation layer is rela-
tively simple in comparison to other types of devices. The battery
status is changed not in response to OSs, but by user behavior, such
as connecting the system to an AC power source.

Therefore, the back-end Virtual Battery device driver only han-
dles inquiries for battery status. While the original back-end driver
regularly polls host battery information through the host ACPI
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(a) Original VirtualBox ACPI driver structure (b) Virtual Battery ACPI driver structure

Fig. 2. Virtual Battery provides separate battery emulation to each virtual machine, independently from the underlying host ACPI driver.
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driver, the Virtual Battery back-end driver regularly fetches virtual
battery information from the Virtual Battery status files.

Besides the front- and back-end device drivers and the battery
emulation layer, Virtual Battery has two more components, the
discharger and Virtual Battery manager, as shown in Fig. 3. The dis-
charger is a thread in charge of mimicking battery drainage due to
system activities. It decreases the remaining charge of a VM bat-
tery in proportion to its allocated processing time. Virtual Battery
manager is a GUI application that displays and manipulates the
status of Virtual Batteries.

The back-end ACPI driver has a thread to manage the battery
status information for a VM. A VM instance in the type II virtualiza-
tion scheme is commonly implemented as a process on the host
system. Thus, in our approach the threads identify VMs by their
process IDs (PIDs).

The Virtual Battery status files have the same format as the ori-
ginal battery status files in the proc file system. However, to iden-
tify information from different VMs, the file names contain the PID
of the corresponding VM. The battery emulation layer finds the Vir-
tual Battery status information files assigned to a specific VM by
using its PID. Status information is updated by both the Virtual Bat-
tery manager and the discharger threads.

Users monitor and control the Virtual Battery status through
the Virtual Battery manager. Fig. 4 shows a screen shot of the Vir-
tual Battery manager GUI. This application can show the status of
up to four Virtual Batteries at once. On the screen, remaining
capacity is displayed in terms of mWh, which is the unit of battery
charge. The GUI also shows the ratio of remaining charge to battery
capacity as a horizontal bar graph. The charging status is shown as
a pair of radio buttons. The battery capacity and the current charge
Fig. 3. Virtual Battery consists of three components: the Virtual Battery device
layer, a management application, and a discharger thread.
of a hypothetical battery are configured simply by entering desired
numbers. The battery charging status can also be set by clicking the
radio buttons. When a user requests status changes through the
manager, the manager writes the updated information over the
applicable files. Then the updated information is collected by the
back-end ACPI driver. The configuration and information update
operations are regularly conducted every second.

In actual systems, batteries discharge in proportion to system
energy consumption. Virtual Battery mimics battery discharge
through the discharger thread. Fig. 5 shows the workflow for the
discharger. A discharger thread is periodically activated and col-
lects resource usage information for the corresponding VM from
the proc file system. Based on the underlying energy consumption
model and the amount of resources used in the last time interval,
the discharger calculates the amount of energy to be deducted
from the current charge value of the virtual battery. It updates
the remaining charge in the status file and returns to the sleep
state. The activation interval is by default set to be 1 s. However,
the activation interval is easily configured with a parameter.

Currently, our model simply multiplies processor time by a
user-defined constant. Because each VM runs as a task in the host
system, the host system keeps track of the resource usage informa-
tion for each VM in the proc file system, which is easily accessible
from the discharger thread. Although in this model batteries seem
to gradually discharge over time, its accuracy is far from that re-
quired for battery simulation or to profile the energy usage of a
VM because the usable battery capacity heavily depends on diverse
parameters including the discharge rate and system load [10].
However, modeling battery characteristics is beyond the scope of
our research and capability because accurate modeling of battery
behavior requires intense knowledge in electrical and chemical
engineering. We believe that existing research results for estimat-
ing VM-level energy consumption [6,11] and for modeling battery
characteristics can be easily incorporated into the discharger since
the discharging and battery modeling component of our prototype
is implemented as an independent module so that the proposed
layer operates as a platform for applying the diverse existing bat-
tery models when it is necessary.

The front- and back-end drivers use processor time only when
the guest OSs request battery status information or notification
events occur due to status changes or low battery levels. Because
these conditions rarely occur and the complexity of both drivers
is as simple as in conventional bridge drivers, their impact on per-
formance is negligible. The discharger thread is the only compo-
nent that requires additional computing resource since it wakes
up and updates the battery status files every 10 s or once in a
user-defined interval. However, in comparison to the processor cy-
cles that a VM consumes, the additional processor time for the VM



Fig. 4. The Virtual Battery manager displays information for up to four virtual batteries at the same time.
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Fig. 5. The discharger periodically determines the amount of energy to be deducted from the virtual batteries based on the amount of resources used by virtual machines.

Y. Woo et al. / Journal of Systems Architecture 59 (2013) 794–800 797
discharger thread is insignificant. In fact, no statistically significant
differences in the performance of VMs and the host system were
found when we conducted a series of benchmark tests.
3. Case studies

To demonstrate the effectiveness of Virtual Battery, we describe
three examples in this section: enforcing low-power resource man-
agement policies on the guest system, testing hibernation initiated
by a low-battery condition, and allocating energy budget to VMs.

3.1. Testing environment

Because Virtual Battery is implemented as an ACPI-compliant
battery device, any guest OS equipped with an ACPI battery driver
can be configured with Virtual Battery. To prove this, we created
VM images of diverse guest OSs. The OSs used in our research were
various Linux distributions including Ubuntu, Microsoft Windows
XP and Windows 7, and Android x86. All OSs were automatically
configured with a conventional ACPI bridge driver during their
installation. The VMM was reconfigured to use Virtual Battery after
installation of the guest OSs, and then all VMs successfully recog-
nized Virtual Battery.

As shown in Fig. 6, when they were configured with a conventional
bridge driver, the guest OSs displayed their battery status as unknown
since the host system has no battery installed. After they were config-
ured to use Virtual Battery, the battery status information showed
both the charging status of a battery and its remaining charge. In addi-
tion, when the battery manager changed the charging status or
remaining charge for the battery, the changes were instantly reflected
in the battery status information of the guest system.
3.2. Enforcing battery-mode resource management on VMs

End users, but not developers, may need virtualization when
using multiple OSs in a single system or sandboxing unverified



Fig. 6. Two Android x86 VMs are running side by side on an AC-powered desktop PC. The left one is configured with a conventional bridge driver and the right one with
Virtual Battery.
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applications. Modern OSs carry out a lot of housekeeping tasks in
the background such as backing up, system software updating,
and system status logging. In addition to OSs, applications also
conduct many background operations including application up-
dates, data reorganization, data backup, and data fetching from re-
mote sites. Virtualization inherently induces a significant
overhead. Therefore, such background tasks can have a significant
negative effect on user experience. What users want from type II
virtualization is to run a specific set of applications inside VMs,
so it is highly desirable to allow only essential tasks in a VM and
to limit non-urgent background activities.

Most modern OSs provide battery-mode resource management
policies, which minimize energy consumption using various
means, including suspension of housekeeping tasks. Virtual Battery
can enforce these power-aware resource management policies on
VMs by making them believe that they are working on battery
power. In addition, many applications adapt their behavior to the
system energy status. Thus, making them believe that the system
is working on battery power would limit their activities to only
crucial operations.

All three guest systems indicated that they were working on
battery power when Virtual Battery entered the discharge mode.
In addition, we observed that the Windows 7 VM halted system
update operations when in discharge mode. We also verified that
an antivirus program started to download update files immediately
after we changed the status to ‘‘being charged’’. According to its
manual, the software downloads only when the system is con-
nected to external power.
3.3. Testing OS reactions to the low-battery condition

Virtual Battery can be useful when developers want to test soft-
ware components that react to battery status changes. For exam-
ple, some OSs conduct housekeeping tasks, such as backing up,
disk defragmentation and malware detection, only when the sys-
tem is connected to AC power. Another example is for testing
hibernation. Hibernation is a power-down mode supported by
most modern OSs. When the remaining battery charge reaches
its low threshold, hibernation saves the contents of the entire
memory to non-volatile storage and shuts down the system. The
saved contents are loaded back into memory to resume the system
after a sufficient amount of energy is secured.

Since it takes a significant amount of time to discharge a battery
to the low threshold and to recharge it to a sufficient level for
resumption, testing of hibernation features is time-consuming Vir-
tual Battery can expedite testing procedures for hibernation. We
observed behaviors exhibited by the Android x86, Ubuntu, and
Windows XP VMs after we changed the remaining charge level
to 3% of the battery capacity. The host system was a workstation
equipped with no batteries. The Ubuntu and Windows XP VMs suc-
cessfully initiated and finished hibernation immediately after we
changed the battery level as shown in Fig. 7. Since Android does
not have a hibernation feature, the Android VM halts all applica-
tions and shuts down automatically. These same behaviors were
observed when the discharger caused the remaining charge to
reach the low threshold.

3.4. Allocating energy to VMs

When multiple VMs of different importance are running, the
user can control the amount of processor time for a VM by using
Virtual Battery.

We set the same amount of remaining battery charge for two
VMs and ran a movie player continually on one of the VMs. The dis-
charger threads for both VMs were activated and drained their bat-
teries according to their processor times. The movie player VM
discharged its battery 4.5 times faster than the other VM. Finally,
when the remaining charge reached 10%, the movie player VM
popped up a warning message and hibernated, while the other
VM was still in operation.

Because the current discharger model is built on the simple
assumption that battery consumption is proportional to processor
utilization, the calculated discharge does not accurately reflect ac-
tual energy consumption [12]. Despite this inaccuracy, we believe
that our preliminary discharging model provides an intuitive inter-
face for regulating VMs so that they consume resources according
to their priorities because the amount of remaining charge would
be recognized more intuitively than the processor time or other re-
source units and the remaining lifetime for a VM is automatically
calculated by the guest OS as its remaining battery lifetime.
4. Related work

Cao et al. first coined the term Virtual Battery for an energy
abstraction layer that provides battery abstraction to each applica-
tion individually on sensor network systems [13]. It distributes the
remaining energy to applications according to their priorities, and
it prohibits applications from consuming more energy than their
allocated share by estimating their energy consumption. The Vir-
tual Battery proposed in this paper is intended to emulate and
manipulate battery behavior as a development and testing tool,
whereas the Virtual Battery of Cao et al. 13 is intended to



Fig. 7. After the charge of the virtual battery was set to a low value, the guest operating system initiated the hibernation procedure.
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guarantee a proportional share of energy allocation in sensor net-
work systems.

A battery emulation scheme must estimate the energy con-
sumption of each processing entity. The basic proposition of power
estimation at the software level is that greater resource usage
causes higher power consumption [14]. This fundamental point
has been the basis of a lot of research on energy efficiency optimi-
zation schemes, estimation models for power consumption and
power management schemes [15].

It has been suggested that the power consumption of a VM
might be measured or estimated based on the resources used
[6,11]. These approaches commonly identify relationships between
resource utilization and system power consumption. Based on
these relationships, they estimate the power consumption contrib-
uted by a VM according to its resource usage. These estimation
models are necessary for optimizing the energy usage of virtual-
ized and consolidated enterprise workloads in data centers while
preserving service quality [16]. However, to the best of our knowl-
edge, this is the first work that utilizes a VM energy consumption
estimation model to emulate battery behavior as a development
tool.

A VM power management scheme has been proposed that pro-
vides a VM with computing resources in accordance with its re-
quested power state and workload characteristics [17]. The aim
of this research was to improve VM energy efficiency while main-
taining service-level agreements. On the contrary, our research en-
forces the performance and energy demands of a host system or
host users on VMs because, in type II virtualization, the system-
wide throughput or energy efficiency is more important than that
of a single VM.

Our approach to the battery discharger oversimplifies the
power consumption model of a VM, since our primary goal was
to implement a battery virtualization layer that can easily be
manipulated. However, when accurate simulation of battery dis-
charge characteristics is necessary, incorporation of existing mod-
els for estimating the power consumption of a VM will easily
satisfy such demand.

The Cinder OS [18,19], which is a research OS for mobile de-
vices, accurately monitors and controls the energy consumption
of each application. In type II virtualization, a VM is implemented
as a task or process on the host OS. Therefore, if the host OS em-
ploys the Cinder architecture and incorporates its monitoring and
control features into our scheme, a VM can be seen as a unit of en-
ergy allocation. Thus, applications inside a VM can grasp the allow-
able energy for the VM through Virtual Battery and adjust their
service fidelity to fit the energy allocation [20].
In practice, the OS emulator included in the development envi-
ronment for Google Android provides battery subsystem emulation
[21]. Developers can change the battery charging status and
remaining battery capacity of the emulated machine, and watch
the system behavior according to that change. Different from our
approach, this is only applicable to the Android OS, and it does
not provide the battery discharging simulation.

For web applications to determine the host system, the World
Wide Web Consortium proposed an API named battery status API
[22]. A web application is able to check the battery capacity of
the host system by calling the API functions, and adapt its behavior
to the current energy condition. An approach similar to Virtual Bat-
tery can be applied to create a testing environment for energy-
aware web applications. By inserting a battery system emulation
layer in between the host and the API, the developers can test the
behavior of web applications according to the host battery state.

5. Conclusions

Because of the ever-increasing importance of battery manage-
ment in the mobile cyber-physical systems, the development of
battery-related software components is becoming crucial. How-
ever, because manipulation of battery status is a physical and slow
task, testing of battery-related features with real batteries is usu-
ally cumbersome and time-consuming. A battery emulation layer
for VMs that the user can manipulate would relieve this problem.

We proposed and implemented Virtual Battery, a battery virtu-
alization scheme for type II full virtualization platforms. Virtual
Battery provides each VM with a separate hypothetical battery that
is monitored and controlled through a GUI application. In addition,
we suggested a discharger for Virtual Battery that gradually de-
creases the remaining energy of each hypothetical battery accord-
ing to the amount of processing time allocated to the
corresponding VM. To show the effectiveness of our scheme, we
carried out tests.

The proposed scheme is suitable for testing procedures for bat-
tery- and power-related OS or application features. Therefore, it
will be helpful in improving the energy efficiency of software. In
addition, when end users run multiple VMs for various purposes,
our scheme can be used to control VM energy consumption by set-
ting the remaining charge for each VM.

The prototype currently supports only x86-based VMs since the
virtualization platform that the prototype was built upon is dedi-
cated for x86 virtualization. However, considering the growing
popularity of mobile embedded systems, porting VirtualBox to
virtualization platforms for embedded hardware architecture, such
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as ARM or MIPS, is highly desirable. We believe that QEMU, a plat-
form-independent virtualization tool, would be an appropriate
base for this purpose, and we also expect that porting Virtual Bat-
tery to QEMU would require marginal effort since QEMU supports
ACPI emulation and the ACPI emulation component of QEMU is
well modularized similarly to VirtualBox.
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