
892 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

Contributed Paper
Manuscript received 10/02/13
Current version published 12/24/13
Electronic version published 12/24/13. 0098 3063/13/$20.00 © 2013 IEEE

Efficient Function Call Tracing
with Link-Time Binary Rewriting for CE Devices

Bon-Keun Seo, Jinkyu Jeong, Joonwon Lee, and Euiseong Seo

Abstract — As the scale and complexity of software

components in consumer electronics increase, the importance
of performance optimization is rapidly growing. Consequently,
the demand for performance optimization tools tailored for the
consumer electronics environment is stronger than ever. A
function call tracer is a vital tool for investigating
relationships between functions, invocation counts of a
function, and elapsed time in a function. Despite its
importance in performance optimization, the limited capability
of embedded hardware prohibits use of existing dynamic
binary instrumentation tools. Moreover, the use of closed
proprietary components excludes source-level analysis tools
out of viable options. In this paper, LITIFUT, a function call
tracer designed for consumer electronics, is proposed. This
tool rewrites an executable file or a library file to inject
profiling code during the linking stage. This approach
achieves as little performance overhead as source-level
instrumentation and as minor developer-intervention as
binary-level instrumentation. The prototype implementation
supports the two most popular embedded processor
architectures. The evaluation with a real-world embedded
software application showed that LITIFUT successfully
profiles program activities with insignificant overhead. 1

Index Terms — Embedded systems, Function call tracing,
Binary rewrite, Static instrumentation

I. INTRODUCTION

For most embedded software developers, function call traces
are invaluable data for both performance optimization and
debugging. Function call traces reveal the internal activities of
software, elapsed time in each function, causes of abrupt system
crashes, and so on. Therefore, function call tracers are being
used as veritable stethoscopes by software developers.

Function call tracers are also useful for consumer
electronics development. For example, these tools can be used
to reduce the booting time of digital TVs, smartphones, and
other devices [1], [2]. For this purpose, a developer collects
function call traces during the booting stage and determines
which function calls can be delayed to a post-boot time. The

1 This work was supported by the IT R&D program of MKE/KEIT

[KI10041244, SmartTV 2.0 Software Platform] and Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology (2012-0006423).

Bon-Keun Seo is with the Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea (e-mail: bkseo@camars.kaist.ac.kr).

Jinkyu Jeong, Joonwon Lee and Euiseong Seo are with the Sungkyunkwan
University, Suwon, Korea (e-mail: {jinkyu,joonwon,euiseong}@skku.edu).

functions can then be removed from the boot process.
Function call tracers are also helpful in identifying the sum of
time taken for each function and in count the number of
function calls [3]. Obviously, the function call log is
aggregated by the function to yield the sum or the count. This
information is the most useful for optimizing embedded
software performance. In addition, when a consumer
electronic device must customize the kernel or system
libraries, such as the buffer cache [2], [4], function call traces
operate as a strong analysis tool for understanding and
comparing the behavior of the customized algorithm.

Although many function call tracers based on diverse
methods have been developed, they share a common
requirement: the target application must be run at least once to
obtain the results. The runtime overhead that a tracer tool
incurs becomes a significant burden when the software to
analyze is running on consumer electronic devices with
limited computing capabilities. In fact, the overhead may
cause the device to malfunction or to run too slowly to trace.

A compiler level tool [5] provides an option to insert function
call trace stubs for the entry and exit of all function calls; it can
therefore be used as a Swiss-army knife for function call
analysis. However, source-level instrumentation is not suitable
for most cases in the CE device development process. Out-
sourced proprietary libraries that are typically used in these
devices do not allow access to source code. Because it requires
source code, some functions in these libraries cannot be traced.
Moreover, all the code in the software application must be
compiled using a specific option that should not be used in the
final product. Because source code compilation of consumer
electronic devices typically takes hours, it impedes the
performance of the software developer.

Function call tracing can be implemented using a binary
instrumentation tool [6]–[14]. This type of tools has
significant runtime overhead because binary instrumentation is
usually implemented using runtime binary translation or
runtime probe injection. The runtime overhead makes the
binary instrumentation technique impractical for CE devices,
which are very slow even without the instrumentation. Most of
this overhead is a result of the generality of binary
instrumentation tools, which enables deeper analysis in
addition to function call tracing.

To address the above issues, LITIFUT, the acronym of
Link-Time Function Tracer, which is a link-time binary
rewrite tool for function call tracing in CE devices, is
proposed. Because it performs function call tracing only,
LITIFUT minimizes runtime overhead while adding the

B.-K. Seo et al.: Efficient Function Call Tracing with Link-Time Binary Rewriting for CE Devices 893

convenience of binary instrumentation tools. An embedded
software application applying LITIFUT runs as fast as one
without it. In addition, it is very easy to apply LITIFUT. A
developer easily writes trace recording subroutines to fit for
the specific development environment and for its own tracing
purpose. The tracing option is turned on and off during link-
time by simply setting an appropriate environment variable.

For our study, the prototype of LITIFUT is implemented for
the two most popular embedded processor architectures. It was
then evaluated with a real-world consumer electronics
workload and two performance benchmarks.

The rest of this paper is organized as follows: Section II
introduces the design principles of LITIFUT and Section III
presents its implementation details. The profiling automation
front-end of LITIFUT is presented in Section IV. Section V
evaluates the prototype implementation. Finally, Section VI
concludes the research.

II. DESIGN

The design of LITIFUT is inspired by the probe injection
mechanism used in dynamic binary instrumentation tools such as
KProbes [12], SystemTap [13], DTrace [14], and so on, except
that it is statically performed at link-time. With minimized
runtime overhead, it eliminates the necessity of user intervention
in source-level instrumentation by rewriting the binary file.

A. Goal

The desired properties of the proposed function call tracer
are as follows:
 Because it is targeted for CE devices, it should support, but

not be restricted to, embedded processors.
 It should be able to efficiently trace all functions in the

binary file, except user-defined exceptions.
 It is better to have as little overhead as possible. The

overhead accounts for both additional memory capacity and
CPU cycle.
 It should be easy to use. Less user intervention is most

desirable, even without build system modification.
 To enable deeper analysis, it should support dynamic shared

libraries.

B. Architecture

LITIFUT rewrites a binary file at link-time. It performs this
function by using a mechanism similar to probe injection,
which substitutes a machine instruction to call a probe that
emulates the original instruction, while also executing the
additional job that the probe was meant to perform.

Unlike dynamic instrumentation schemes, LITIFUT
statically inserts a tracer module into the binary. It makes the
tracer efficient and able to trace from the beginning of the
execution. For this purpose, LITIFUT uses the linker to link
the tracer module object files in addition to the original object
files. If the source object files are not available, a disassembly
and reassembly technique [15], other than using the linker, is
applicable. However, LITIFUT assumes that the object files
are always available because the function call tracers are most
valuable in development phases.

Fig. 1. The architecture of LITIFUT. The binary rewriter, the tracer
module, and the automation front-end are the building blocks of
LITIFUT. The front-end uses the linker to produce a binary file to
rewrite from the original object files.

To instrument function calls, LITIFUT modifies existing

function calls to instead jump to the tracer module, which
records and emulates each function call on runtime. It is the
binary rewriter’s job to overwrite function call instructions in
executable and library files. The rewriter also records the
overwritten function call instructions for the tracer module to
emulate them on runtime. The binary rewriter and tracer
module must be architecture-dependent to be able to
correctly rewrite and emulate the function call machine
instructions.

For ease of use, LITIFUT provides an automation front-
end, which works as the wrapper of a compiler toolchain
and simplifies the process of linking the tracer module and
rewriting the binaries. Using this front-end, a developer can
easily enable and disable the function call tracer by simply
turning on and off a specific environment variable.

The overall architecture of LITIFUT is illustrated in Fig.
1. The figure depicts how each module interacts to trace
function calls in CE devices.

III. BINARY REWRITING

The binary rewriter is designed based on function call
application binary interfaces (ABIs) for embedded
processors [16], [17]. The binary rewriter substitutes each
function call instruction that is a 4-byte machine instruction,
into one jump instruction that is directed to the tracer
module. Because one machine instruction is replaced by
another, no additional address adjustment is needed;
therefore no update to, even existence of, the relocation
information is required.

For the instruction overwrite, the rewriter should have the
following mechanisms for each processor type. First, the
rewriter should be able to differentiate instructions from data
in the binary file. Second, the rewriter should have a
mechanism to filter function call instructions from all
instructions in a software application. Finally, the rewriter
should choose one machine instruction that jumps to the tracer
module without relocation.

894 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

A. Function call application binary interfaces

For each processor and runtime environment, the function
call ABI is defined for compatibility. With them, various
compilers from various languages can cooperate to produce a
working binary file. The ABI constitutes a few function call
standards. It defines the machine instruction to use for a
certain circumstance, the parameter and the return value
passing standards, the use of stack frames, and the register
usages. When a compiler is compatible with the ABI, there
must be a limited number of function call patterns in the
executable files. Therefore, one can assume that there is no
function call that is out of that pattern when it is built using
such a compiler.

In an embedded processor, henceforth called EMBProc A
[16], function calls are implemented using the instructions
outlined in Table I. Each of these instructions uses an
immediate value, a register, or a value stored in memory as a
reference to the target function address. After the function
call, the return address is stored in the lr register, and the
sp register should reference an appropriate stack address to
store local variables, and so on. Function parameters are
passed using r0-r3 registers and the stack, and the return
value is set to the r0 register.

The compiler for EMBProc A translates static function
calls using the bl instruction, which relatively jumps to a
location within the 64MB boundary. Therefore, a static
function call cannot jump to a function that is located beyond
the boundary. Whenever the linker detects that the function
call exceeds the 64MB boundary, it generates a veneer
function that bridges the gap between caller and callee. A
veneer function indirectly jumps to the destined function
using an ldr $PC, [$PC-4] instruction with the target
address stored beside the ldr instruction. The long-distant
function call is then replaced by a call for veneer function.
Because the veneer function does not change all the registers
including the lr register but the pc register, the callee
correctly runs and returns to the caller without any
modification.

An ldr instruction is also used for the procedure linkage
table (PLT) to indirectly call dynamic shared library
functions. However, it loads the address in the global offset
table (GOT) in place of the address stored beside it.

Function call instructions in the other processor—here,
EMBProc B [17]—are simpler than those of EMBProc A.
There are only two instructions in use and they are absolute
jump instructions. Although there are additional relative
branch instructions, they have a 256 KB addressing limitation
because only 16 bits of the instructions are used for an
immediate. Therefore, they are not suitable for generic
function calls because they complicate the compiler and linker
implementation. The return address should be stored in the ra
register, and the sp register holds the stack pointer.
Parameters are stored in s0-s9 registers and in the stack, and
the return value is stored in v0 and v1 registers. The jr
instruction is used for the PLT function call, similar to what
the ldr instruction does in EMBProc A. In most operating
systems, the jalr instruction uses only the t9 register for
function address holding, and t7 and t8 registers are reserved
for the dynamic linker.

B. Binary rewriter

The binary rewriter overwrites all function call instructions
in the binary into the call for the tracer module. The overall
operation of the binary rewriter is illustrated in Fig. 2. At first,
the rewriter filters out the function call instructions. For this
purpose, it segregates instructions from the data and checks
whether or not each instruction is a function call instruction.
All the instructions are stored in .text, .init, and .fini
sections. However, there might be read only data in the code
sections, because some compiler optimization algorithms store
function static constant variables within the instructions of the
function. In this case, the compilers for EMBProc A generate
mapping symbols such as $a, $d, and $t, to mark regions for
instructions, data, and thumb instructions, respectively [16]. In
the case of the compilers for EMBProc B, each symbol table
entry for functions in the ELF file contains an (address, size)
pair of the range wherein the instructions are stored.

Next, the rewriter checks whether or not each instruction is
a function call. The identification is performed based on
function call ABIs for the specific architecture. LITIFUT
rewrites instructions for static function calls and virtual
function calls only, not for PLT and veneer functions. This is
because PLT and veneer function calls can easily be post-
processed after the application execution.

TABLE I
EMBEDDED PROCESSOR FUNCTION CALL INSTRUCTIONS

Processor Instruction Type Next PC Usage

EMBProc A

bl / blx (I) Immediate PC + Immediate Static functions

blx (R) Register Value of R Virtual functions

ldr $PC, (R) Memory Value of address R PLT, veneer functions

EMBProc B

jal (I) Immediate PC31..28 I25..0 00 Static functions

jalr (R) Register Value of R Virtual functions

jr (R) Memory Value of R PLT

B.-K. Seo et al.: Efficient Function Call Tracing with Link-Time Binary Rewriting for CE Devices 895

Fig. 2. Operation of binary rewriter and tracer module. The binary
rewriter substitutes all function calls to instead jump to the tracer module,
which in turn appropriately emulates and records the function call.

Finally, the function call is substituted by a replacement

instruction. In EMBProc A, the only instruction that directly
jumps to the tracer module is the bl instruction. Because the
bl instruction cannot jump beyond the 64 MB range, the
assembly stub of the tracer module must be repeatedly inserted
to be in the vicinity of the bl instruction. This is the job of the
automation front-end, as explained in Section IV.

In EMBProc B, the jal instruction performs the same role
as the bl instruction in EMBProc A. Unfortunately jal is an
absolute jump instruction, so that special care is required when
it rewrites the dynamic shared libraries (See Section III-F).

While the function call instruction is replaced, the original
instructions are gathered in an instruction DB. Each record in
the DB is a pair of (address, instruction). The instruction DB is
used to emulate the function call in the tracer module, as
explained in Section III-C.

C. Tracer module

The tracer module emulates the original instruction to jump
to the appropriate function after it records the function call in
the log. On runtime, every function call jumps to the tracer
module. The control flow first reaches the assembly stub,
which saves all the registers, calls the routines recording
function call traces and emulating function calls, and finally
jumps to the original target function. The assembly stub
implementation detail is architecture-dependent.

In EMBProc A, the stub jumps to the originally intended
function by setting the pc register to the emulated
next_pc value. The emulation is performed by calling
calc_next_pc() function with the saved instruction as
an argument. From the many ways of manipulating the pc
register, the assembly stub uses the method of modifying
the register value saved in the stack before restoring it at
the end of the stub. In this way, all registers except the pc
register hold identical values before and after the stub
execution.

Algorithm 1. Assembly stub for the tracer module

procedure embproc_a_stub()
stack ← push(registers)
instr ← find_instruction($lr)
next_pc ← calc_next_pc(instr)
record_trace(next_pc)
stack[pc_offset] ← next pc
registers ← restore(stack)

procedure embproc_b_jal_stub()
stack ← push(registers - $t9)
next_pc ← find_instruction($ra)
record trace(next_pc)
$t9 ← next_pc
(registers - $t9) ← restore(stack)
jr $t9

procedure embproc_b_jalr_stub()
stack ← push(registers)
record_trace($t9)
registers ← restore(stack)
jr $t9

Searching for the saved instruction from the instruction DB

is implemented as a binary search function
find_instruction() using the return address (lr
register) as a key.

In EMBProc B, two assembly stubs are implemented: one
for jal; the other for jalr. Because the jalr instruction
always uses the t9 register to hold the address of the callee,
using a special stub eliminates the need for saving the jalr
instructions, which thereby reduces the memory requirement
for the instruction DB.

The jal stub performs the same way as the one for
EMBProc A, except it directly uses the address. Because there
is only one type of instruction that holds the target address as
an immediate, the emulation can be conducted at link-time,
which releases the burden of runtime emulation overhead.

The jalr stub is the simplest of all the stubs. It only saves
some registers modified by the stub, calls the
record_trace() function to make a function call log,
restores the registers, and jumps to the function that the t9
register references.

The tracer module must be loaded before the binary file
begins running. Therefore, the module is statically loaded in
the binary file. LITIFUT uses the static linker by modifying
the linker command line to link the object files of the tracer
module.

D. Two pass scheme

The binary rewriter creates the instruction DB as a by-
product of its operation. The instruction DB must be loaded
before the tracer module emulates the function call for the first
time. Without the DB, the emulation fails and, the program
cannot proceed. There are many options wherein the DB is
stored, such as in a raw file, a DBMS, or the binary file itself.
LITIFUT stores the DB in the binary itself, because it can
eliminate any dependency for the DB loading; the DB is

896 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

present in the address space whenever the binary file executes.
The instruction DB is built as an array of (return address,

instruction) in a C source code file. It must be compiled and
linked to the binary along with the original object files and the
tracer module. However, the DB is created after the binary
rewriter has finished running. Therefore, it is required to run
the linker and the rewriter twice. The first time, they build the
DB; the second time, they rewrite the binary.

The two-pass rewrite scheme, which is regarded as complex,
can be reduced to a one-pass scheme using other binary
rewriting tools [15]. However, it is simplified using the
automation front-end, as explained in Section IV.

E. Trace recording

The tracer module supports various trace recording methods.
If the developer determines what to record and where to store
it, the module attempts to minimize overhead and user
intervention. The developer can modify the
record_trace() function to alter the behavior of the
module.

The tracer module supports the following functions by
default. First, it can be configured to copy the trace file to a
USB thumb drive when the trace stops. Because recent CE
devices typically support USB thumb drives, the automated
copy operation simplifies the process of transferring log files
for analysis.

Second, it supports a bulk-write option. By writing the
traces in a large bulk, the tracer greatly reduces I/O overhead.
However, this requires a thread-safe algorithm to correctly
operate.

Third, it supports multi-threaded applications. Because a
lock-free atomicity-guaranteeing algorithm guards the
recording process, it can safely record multi-core, multi-
threaded application traces. Considering the trend that CE
devices employ multi-core processors, thread safety is a
fundamental requirement nowadays.

Last, it can be configured to de-duplicate the trace online
using a bloom filter. Nevertheless, some CE devices have a
storage device with scarce capacity if the operation of the
device does not depend on it. To trace function calls for those
devices, the trace size must be minimized to fit in free
memory space. In that case, the bloom filter becomes useful
because it is better than losing all traces, even though there is
little possibility of missing some function calls.

Using the default trace recorder, CE software developers
might do most of their function call trace analysis.

F. Dynamic shared library

A dynamic shared library file is dynamically loaded into a
free virtual memory region unlike an executable file, which is
always loaded into the specified address in the ELF header of
the file. Therefore, the runtime address of the dynamic shared
library always changes whenever the library is loaded. There
have been efforts to make dynamic shared libraries load into
fixed memory addresses [18]; however, it is not always
guaranteed. Because of the dynamic nature of runtime
addresses, a program linkage table (PLT) and global offset

table (GOT) are devised to reference functions and variables
in dynamic shared libraries [19].

The dynamicity of addresses also affects the
implementation of the tracer module. The module uses the
return address of a function call to search the instruction DB,
however, the address changes every time the library loads.
Therefore, the stub adjusts the return address by subtracting
the base address where the library is loaded. The base address
can be easily obtained by a simple calculation:
runtime_address - ELF_address. For the calculation, the stub
function address in the ELF file is stored when the library is
rewritten.

In EMBProc B, where only absolute jump instructions are
supported, an absolute jump instruction cannot directly
reference a function in the library, because the address of the
function is unpredictably determined at runtime. Therefore,
the library function of EMBProc B is indirectly called by
calculating the address from the frame pointer register. For
this reason, all function calls in a shared library are
implemented using jalr, the register jump instruction.

The jal instruction used for the rewriting likewise cannot
directly call the tracer module if it is inserted into the library.
Therefore, it tries to call the module in the executable;
however, the 256MB address limitation prevents the function
call from occurring. The library loads into the dynamic loader
predetermined memory region (0x200000000x2FFFFFFF),
and the address range lies too far from the module in the
executable (0x00000000-0x0FFFFFFF).

Therefore, it is required to use a tiny bridging stub that
bridges the gap between the library function calls and the
tracer module in the executable. The stub indirectly calls the
module in the executable to determine the address of the
module, and it has a fixed address near libraries (0x20002000)
because it is mmapped to the address by the executable. The
function call in the library is substituted to a call for the
bridging stub by the rewriter so the call redirects to the
appropriate address. Mapping of the stub occurs the first time
that the function in the executable is called. Because a
function call inside a library occurs after at least one function
is called by the executable, there is no possibility of a library
function calling another function without the stub.

IV. AUTOMATION

It is difficult to use the binary rewriter, because the rewriter
takes multiple steps with many hard-to-derive parameters.
Such parameters include the address and size of a function that
will be excluded from rewriting. To simplify the process, the
automation front-end is devised. From the fact that it requires
two linker invocations, the automation front-end replaces the
linker command line to build rewritten binary files as if it is
one of the feature of the linker. This attribute makes LITIFUT
a link-time binary rewriting tool. After the trace file is created
by running the rewritten application in the target CE device,
the raw trace file must be post-processed to be human readable.
The automated postprocessor creates final trace files by
reorganizing function call traces for each executable file and

B.-K. Seo et al.: Efficient Function Call Tracing with Link-Time Binary Rewriting for CE Devices 897

library file. The automation front-end makes the binary
rewriting and trace processing an easy task by simply enabling
an environment variable and running a post-processor
application.

A. Linker substitution wrapper

The automation front-end replaces the linker using symbolic
links. A linker invocation instead executes the front-end,
which automatically runs all the tasks a binary rewriter must
perform. These tasks constitute, copying and compiling the
tracer module, executing the modified linker command line
that builds a binary file, including a tracer module, and
rewriting the binary file.

An environment variable is used to notify whether the
automation front-end should work as a linker or rewriter. If the
environment variable is not defined, or if it has an invalid
value, the front-end only runs the linker to produce the
unmodified binary file.

Another task of the front-end is to resolve the symbol table.
Given a list of functions, object files, and library files that
should not be rewritten, the front-end finds out the list of code
sections that all items in the list take. It then passes the list to
the rewriter in the command line to ignore the code sections in
the rewrite processing. The code sections that each item takes
can be found from the linker map file, which is created by a
special linker command line option. (For the GNU ld, it is the
-Map option.)

B. Trace post-processor

The trace post-processor combines the trace files to produce a
unified view of the function call traces. The post-processor
solves the problems of the raw traces as follows. First, because
the rewriter does not instrument the veneer function, the
function call trace contains the address of the veneer function
instead of the function that is called by the veneer function. To
correctly understand the function call process, the full log
should contain both the veneer function and redirected function.

Second, the developer cannot identify the runtime address
of a dynamic shared library by the raw trace only. While the
application executes, the Linux kernel exports the
/proc/(pid)/maps file that contains all the memory
mapping information. From the file, the address where each
library file is loaded can be easily resolved. Therefore, the
tracer module copies the /proc/(pid)/maps file
alongside the trace files when the trace stops and the trace file
becomes ready.

Third, it contains the address of a PLT entry for each of the
dynamic shared library function calls. The target function
address can be found in GOT, however, it can be retrieved
only on runtime. Nevertheless, it is possible to consult the
symbol table for the GOT entry that is in a one-to-one
mapping relationship with the PLT entry. Because the symbol
(a function name) is more human readable than the address
itself, it is sufficient to log it as ‘a function called through a
PLT entry’.

Last, more than one process must be simultaneously
analyzed. Because more than one application can share a

dynamic shared library, a combined shared library trace is
required if one desires to analyze the behavior of the library.
Additionally, two or more applications can interact using the
IPC mechanism. For this purpose, the post-processor is
designed to load multiple application traces at once, and it is
able to produce a combined function call trace to understand
the inter-operations.

The trace post-processor implements all these features so
that a useful human readable trace output can be produced
from the raw trace files. The basic output is a series of names
of functions called. For more detailed analysis, one can add an
additional post-processor module to it.

V. EVALUATION

All instrumentation tools accompany the observer effect
that affects the operation of the instrumented software. In CE
devices, the slowdown of the software can result in a
malfunction of the device, particularly timing-sensitive
devices (i.e., I2C devices). Moreover, the additional memory
demand can result in a memory shortage, which causes the
whole system to misbehave. Finally, the trace I/O matters
because it can slow the software performance and waste scarce
storage resources.

In this paper, measurements are carried out on two smart
digital TV (DTV) platforms, one with a dual-core EMBProc A
processor, and the other with a single-core EMBProc B
processor. The DTV with EMBProc A has 1GB of RAM,
62MB of free internal storage space, and three USB ports to
connect USB devices such as a USB thumb drive. The DTV
with EMBProc B has weaker computing power, with 512MB
of RAM, 30MB of empty storage capacity, and only one USB
port.

To evaluate the performance of LITIFUT, three types of
workloads are used on both architectures. First, the CPU
intensive workload that serially runs numeric sorts, string
sorts, bit manipulations, float-point manipulations, Fourier
coefficient calculations, Huffman compressions, IDEA
encryptions, and neural network simulations. Second, the I/O
intensive workload that performs random file system reads
and writes on a file. Last, a DTV application is used as a
compound real-world workload. Properties of these
workloads are listed in Table II. The DTV application for
EMBProc B has less functional features than the one for
EMBProc A. It is because that platform is used for low-end
DTVs to lower the price. In addition, executable files for the
CPU-intensive workload and the I/O-intensive workload has
different numbers of function calls for both architectures,
because static libraries linked to the benchmark application
are not identical.

A. Memory requirement

The increase of the binary file size by adding the tracer
module is the main cause of memory overhead. This could be
easily measured by the size of the tracer module. The tracer
module size is dependent on the number of function call
instructions, because the DB comprises most portion of the
module. This is analyzed in Table III.

898 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

The tracer module size becomes almost 10% of the original
application in EMBProc A, which is quite large compared to
the EMBProc B, where it takes 5% in the executable file and
close to 0% in the library file. The reason for this difference is
as follows. First, the module for EMBProc B does not save the
jalr instructions in the instruction DB. It dramatically
decreases the DB size. Second, the library function calls are
solely implemented by the jalr instruction. That makes the
trace module size of the library almost zero by requiring only
the tiny stub, which takes 848 bytes but is rounded up to a
page because the mmap() system call works in page units.

The memory consumption of the function call tracer is
comparable to that of the source-level instrumentation and
dynamic binary instrumentation. The source-level
instrumentation inserts function calls at the entry and exit of
all functions, which uses 32 bytes for each function. This
resulted in a total of approximately 4.1 MB for the DTV
executable file of EMBProc A. It is almost 2.5 times larger in
EMBProc A, but only 1.7 times larger in EMBProc B.
However, for the CPU-intensive workload, LITIFUT is more
efficient, because there is almost the same number of
functions compared to function calls. This memory overhead
is tolerable, considering the advantages of LITIFUT, such as
the possibility of tracing functions without source code or of
tracing functions in dynamic shared libraries. Because the
dynamic binary instrumentation uses a data structure similar to
LITIFUT, the memory consumption is larger than or (in the
best case) equal to that of LITIFUT. Additionally, it carries
the runtime overhead of rewriting instructions at runtime.

B. Performance overhead

Performance degradation induced by tracing affects the
correct operation of the device, and the user experience, while
function calls are traced. The application execution time is
measured to investigate the efficiency of LITIFUT, as depict in
Fig. 3. The measurement is conducted in three configurations:

without tracing (no trace), with tracing but without bulk write
(no bulk), with tracing and bulk write (bulk write). Because the
CPU intensive workload repeatedly runs a set of benchmark
algorithms for a specified time, the execution time is calculated
to the length of time required to run the string sort benchmark
1,000 times. Without bulk write, each function call writes its log
to the trace file, which issues the system call each time. The
DTV workload did not work correctly, which produced a
number of error messages, because it has many timing-aware
function calls interacting with I2C devices in the DTV platform.
In addition, The CPU intensive workload runs indefinitely,
more than an hour, so that it is not measured. The bulk write
scheme solves this problem but increases the memory usage by
the size of the buffer, which is a negligible overhead.

Fig. 3. Execution time overhead of LITIFUT. With bulk write, LITIFUT
exhibits almost no overhead for I/O intensive and compound workloads.

With bulk writing, the execution time increases by
approximately 40% for the CPU-intensive workload because it
intensely performs function calls without idle time. This is one

0

10

20

30

40

50

60

CPU intensive I/O intensive DTV

E
xe

cu
ti

on
 t

im
e

(s
)

No trace

No bulk

Bulk write

TABLE II
PROPERTIES OF WORKLOADS USED FOR EVALUATION

EMBProc A EMBProc B

CPU
intensive

I/O
intensive

DTV
executable

DTV
library

CPU
intensive

I/O
intensive

DTV
executable

DTV
library

Binary size (bytes) 669,256 401,335 109,752,492 5,864,948 883,460 416,996 91,411,476 2,404,460

Functions 1,081 179 128,434 8,484 1,081 179 97,341 2,107

Static calls 1,063 5,207 1,210,466 77,777 4,927 6,995 687,101 0

PLT / Virtual calls 33 2 111,339 722 14 2 218,410 31,163

TABLE III

MEMORY OVERHEAD OF LITIFUT COMPARED TO SOURCE-LEVEL TRACING

EMBProc A EMBProc B

CPU
intensive

I/O
intensive

DTV
executable

DTV
library

CPU
intensive

I/O
intensive

DTV
executable

DTV
library

DB size 9,328 41,672 10,574,440 627,992 40,056 55,960 5,496,808 0

Module size 11,464 11,464 11,464 11,464 9,984 9,984 9,984 4,096

Source-level 34,592 5,728 4,109,888 271,488 34,592 5,728 3,114,912 67,424

B.-K. Seo et al.: Efficient Function Call Tracing with Link-Time Binary Rewriting for CE Devices 899

of the worst-case scenarios, which therefore proves the
efficiency of LITIFUT. The I/O-intensive workload and DTV
workload represent that the CPU overhead can be hidden by
the idle time of the application.

C. Storage consumption

The trace file consumes storage space. The size of a trace
file is dependent on the number of function calls, which in
turn depends on the application execution time. Therefore, a
trace file size can grow indefinitely, evading the precious
storage capacity. In the DTV platform used for the evaluation,
the internal storage capacity is very small, with only 62MB
free, such that the trace file size has to be minimized.

Using the de-duplication feature of LITIFUT, the size of the
trace file is minimized as shown in Table IV. Because the de-
duplication feature can be used only for aggregation analysis,
the sequence analysis workload cannot take advantage of it.
Considering other tools cannot be applied even for
aggregation analysis, due to the scarcity of the resources,
LITIFUT becomes invaluable for the development of CE
devices.

TABLE IV
TRACE FILE SIZE WITH / WITHOUT DE-DUPLICATION

 CPU intensive I/O intensive DTV

No dedup 65,921,024 16,862,656 4,734,976

Dedup 2,552 1,364 32,768

D. Instrumentation delay

Because LITIFUT repeats linking and rewriting process
twice, it has a longer linking time than a normal link process.
The instrumentation delay, however, can be disregarded in
most cases because the target binary file is very small,
whereby it takes less than a minute. The linking time of the
DTV executable is exceptionally long, approximately 137
seconds on average. Therefore, the whole instrumentation
delay takes approximately 5 minutes, including the binary
rewriting time. Considering the compiling delay in the
compiler-based method, and the runtime overhead in dynamic
rewriting schemes, the instrumentation delay can be
disregarded, which makes LITIFUT a viable solution.

VI. RELATED WORK

Because function call traces are very useful in software
development processes, different tools have been developed to
trace function calls in various ways.

Function call traces can be obtained using a compiler and a
linker feature that adds instrumentation stub calls at function
entry and exit [5]. In addition, Lattner et al. proposed a
compiler-based platform for flexible instrumentation [21]. In
that case, source code is required but is not always provided,
particularly in embedded environments. Therefore, an efficient
method to trace from binary files is needed.

A static binary rewriting method can be applied to add
instrumentation calls in an executable file. For example,
Smithson et al. proposed a novel binary rewriting method that
disassembles a binary file and reassembles modified assembly

code [15]. A more sophisticated binary rewrite tool [22]
analyzes a binary file to discover program components and
then inserts instrumentation stubs per instruction basis;
however, it is built for a specific desktop environment, unlike
LITIFUT, which works for CE devices.

The probe injection technique that inserts instrumentation
routines during runtime using a breakpoint instruction can also
be used to trace function calls in a running process [11], [12].
The instruction substitution process in LITIFUT is motivated
by the probe injection procedure; however, LITIFUT has a
better runtime performance than that method, because
LITIFUT modifies the binary file while it is linked, not while
it is running.

The dynamic rewriting scheme [5]-[9] rewrites pieces of a
running program to alter the behavior of them and caches the
rewritten instructions to avoid repetitive rewrite tasks. It also
supports the function call tracing feature; however, its
runtime processor and memory overhead are too heavy to be
practical for CE devices with feeble processors and poor
resources.

The LITIFUT approach is a hybrid solution combining
aspects of the probe injection method and the static binary
rewriting; LITIFUT uses a linker to insert the probe stub and a
binary rewriter to substitute function call instructions.
Therefore, it has a runtime processor and memory overhead
that can be categorized between the compiler-based approach
and static binary rewriting method.

VII. CONCLUSION

Despite the rapid improvement of embedded hardware, the
even faster growth of software component complexity often
induces a sluggish response in state-of-the-art consumer
electronics, such as DTVs and smart phones. The larger the
software code, the more improvement the code optimization
will earn. Consequently, the role of software optimization in
the development of CE devices is becoming crucial.

A function call tracer is one of the most quintessential
performance optimization tools. However, existing function
call tracers, which were primarily designed for PCs and
servers, are not adequate for consumer electronics for various
reasons.

In this paper, a function call tracer named LITIFUT is
proposed for consumer electronics development. By
employing the linking time binary rewriting scheme, LITIFUT
performs fast under a limited amount of computational
resources. In addition, it is able to analyze even when the
source code of object files is unavailable.

The prototype of LITIFUT is implemented for two popular
embedded processor architectures, and it is evaluated with
DTV operating software and two other benchmark suites. The
evaluation showed that LITIFUT added an insignificant
amount of execution time to the DTV software and only up to
10% of memory usage. The de-duplication feature of
LITIFUT saved approximately 99% of storage space for
collected data. Based on these results, it is concluded that
LITIFUT is perfectly suited for the CE devices.

900 IEEE Transactions on Consumer Electronics, Vol. 59, No. 4, November 2013

REFERENCES
[1] H. Jo et al., “Improving the startup time of digital TV,” IEEE Trans.

Consum. Electron., vol. 55, no. 2, pp. 721-727, May 2009.
[2] H. Jo et al., “Optimizing the startup time of embedded systems: a case

study of digital TV,” IEEE Trans. Consum. Electron., vol. 55, no. 4, pp.
2242-2247, November 2009.

[3] S. Park et al., “Development of behavior-profilers for multimedia
consumer electronics,” IEEE Trans. Consum. Electron., vol. 55, no. 4,
pp. 1929-1935, November 2009.

[4] M. Lee et al., “PABC: power-aware buffer cache management for low
power consumption,” IEEE Trans. Comput., vol. 56, no. 4, pp. 488-501,
April 2007.

[5] R. M. Stallman, Using the GNU Compiler Collection (GCC). Free
Software Found., Inc., 2010.

[6] C. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in Proc. 2005 ACM SIGPLAN Conf.
Programming language design and implementation, New York, NY,
USA: ACM, 2005, pp. 190–200.

[7] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Proc. 2007 ACM SIGPLAN Conf.
Programming language design and implementation, New York, NY,
USA: ACM, 2007, pp. 89–100.

[8] K. Hazelwood and A. Klauser, “A dynamic binary instrumentation
engine for the ARM architecture,” in Proc. 2006 Int. Conf. Compilers,
architecture and synthesis for embedded systems, New York, NY, USA:
ACM, 2006, pp. 261–270.

[9] B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
Int. J. High Performance Computing Applications, vol. 14, no. 4, pp.
317-329, November 2000.

[10] G. Ravipati et al., Toward the deconstruction of DynInst, Comput. Sci.
Dept., Univ. Wisconsin, Madison, Tech. Rep., 2007.

[11] D. L. Bruening, “Efficient, transparent and comprehensive runtime code
manipulation,” Ph.D. dissertation, Dept. Elect. Eng. and Comp. Sci.,
Massachusetts Inst. of Technology, Cambridge, MA, 2004.

[12] W. E. Cohen, “Gaining insight into the linux kernel with KProbes,”
RedHat Magazine, March 2005.

[13] F. C. Eigler, “Problem solving with SystemTap,” in Proc. Ottawa Linux
Symposium, 2006.

[14] R. McDougall et al., Solaris performance and tools: DTrace and MDB
techniques for Solaris 10 and Opensolaris, Englewood Cliffs, NJ:
Prentice-Hall, 2006.

[15] M. Smithson et al., “Binary rewriting without relocation information,”
Univ. Maryland, Baltimore, MD, Tech. Rep., 2010.

[16] S. B. Furber, ARM System Architecture, Boston, MA: Addison-Wesley
Longman, 1996.

[17] The Santa Cruz Operation and AT&T, System V application binary
interface: MIPS RISC processor supplement, February 1996.

[18] C. Jung et al., “Performance characterization of prelinking and
preloading for embedded systems,” in Proc. 7th ACM & IEEE Int.
Conf. Embedded software, New York, NY, USA: ACM, 2007, pp.
213-220.

[19] J. R. Levine, Linkers and Loaders, San Francisco, CA: Morgan-
Kaufmann, 1999.

[20] B. De Sutter et al., “Link-time compaction and optimization of ARM
executables,” ACM Trans. Embedded Computing Syst., vol. 6, no. 1,
2007.

[21] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. 2nd IEEE/ACM Int.
Symposium on Code Generation and Optimization, Palo Alto, CA, USA:
IEEE, 2004, pp. 75–86.

[22] T. Romer et al., “Instrumentation and optimization of Win32/Intel
executables using Etch,” in Proc. USENIX Windows NT Workshop,
Seattle, WA, USA: USENIX, 1997, pp. 1–8.

BIOGRAPHIES

Bon-Keun Seo received the B.S. and the MS degree in
computer science from the Korea Advanced Institute of
Science and Technology. He is currently a Ph.D.
candidate in the Computer Science Department, Korea
Advanced Institute of Science and Technology. His
current research interests include file system, operating
system, virtualization, and embedded system.

Jinkyu Jeong received the B.S. degree from the Computer
Science Department, Yonsei University in 2005 and Ph.D.
degree in computer science from Korea Advanced Institute
of Science and Technology in 2013. He is currently a post-
doctoral researcher at Sungkyunkwan University. His
current research interests include real-time system,
operating system, virtualization, memory management, and
embedded system.

Joonwon Lee received his B.S. degree in Computer
Science from Seoul National University in 1983 and M.S.
and Ph.D. degrees from the Georgia Institute of
Technology in 1990 and 1991, respectively. He is
currently a professor in Sungkyunkwan University
(SKKU). Before joining SKKU, he was a professor at the
Korea Advanced Institute of Science and Technology
from 1992 to 2008. His current research interests include

low power embedded systems, system software, and virtual machines.

Euiseong Seo received his BS, MS, and PhD degree in
computer science from KAIST in 2000, 2002, and 2007,
respectively. He is currently an assistant professor in
college of ICE at Sungkyunkwan University, Korea.
Before joining Sunkyunkwan University in 2012, he had
been an assistant professor at UNIST, Korea from 2009
to 2012, and a research associate at the Pennsylvania
State University from 2007 to 2009. His research

interests are in power-aware computing, real-time systems, embedded systems,
and virtualization.

