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Abstract — As the scale and complexity of software 

components in consumer electronics increase, the importance 
of performance optimization is rapidly growing. Consequently, 
the demand for performance optimization tools tailored for the 
consumer electronics environment is stronger than ever. A 
function call tracer is a vital tool for investigating 
relationships between functions, invocation counts of a 
function, and elapsed time in a function. Despite its 
importance in performance optimization, the limited capability 
of embedded hardware prohibits use of existing dynamic 
binary instrumentation tools. Moreover, the use of closed 
proprietary components excludes source-level analysis tools 
out of viable options. In this paper, LITIFUT, a function call 
tracer designed for consumer electronics, is proposed.  This 
tool rewrites an executable file or a library file to inject 
profiling code during the linking stage. This approach 
achieves as little performance overhead as source-level 
instrumentation and as minor developer-intervention as 
binary-level instrumentation. The prototype implementation 
supports the two most popular embedded processor 
architectures. The evaluation with a real-world embedded 
software application showed that LITIFUT successfully 
profiles program activities with insignificant overhead. 1 
 

Index Terms — Embedded systems, Function call tracing, 
Binary rewrite, Static instrumentation 

I. INTRODUCTION 

For most embedded software developers, function call traces 
are invaluable data for both performance optimization and 
debugging. Function call traces reveal the internal activities of 
software, elapsed time in each function, causes of abrupt system 
crashes, and so on. Therefore, function call tracers are being 
used as veritable stethoscopes by software developers.  

Function call tracers are also useful for consumer 
electronics development. For example, these tools can be used 
to reduce the booting time of digital TVs, smartphones, and 
other devices [1], [2]. For this purpose, a developer collects 
function call traces during the booting stage and determines 
which function calls can be delayed to a post-boot time. The 
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functions can then be removed from the boot process. 
Function call tracers are also helpful in identifying the sum of 
time taken for each function and in count the number of 
function calls [3]. Obviously, the function call log is 
aggregated by the function to yield the sum or the count. This 
information is the most useful for optimizing embedded 
software performance. In addition, when a consumer 
electronic device must customize the kernel or system 
libraries, such as the buffer cache [2], [4], function call traces 
operate as a strong analysis tool for understanding and 
comparing the behavior of the customized algorithm. 

Although many function call tracers based on diverse 
methods have been developed, they share a common 
requirement: the target application must be run at least once to 
obtain the results. The runtime overhead that a tracer tool 
incurs becomes a significant burden when the software to 
analyze is running on consumer electronic devices with 
limited computing capabilities. In fact, the overhead may 
cause the device to malfunction or to run too slowly to trace. 

A compiler level tool [5] provides an option to insert function 
call trace stubs for the entry and exit of all function calls; it can 
therefore be used as a Swiss-army knife for function call 
analysis. However, source-level instrumentation is not suitable 
for most cases in the CE device development process. Out-
sourced proprietary libraries that are typically used in these 
devices do not allow access to source code. Because it requires 
source code, some functions in these libraries cannot be traced. 
Moreover, all the code in the software application must be 
compiled using a specific option that should not be used in the 
final product. Because source code compilation of consumer 
electronic devices typically takes hours, it impedes the 
performance of the software developer. 

Function call tracing can be implemented using a binary 
instrumentation tool [6]–[14]. This type of tools has 
significant runtime overhead because binary instrumentation is 
usually implemented using runtime binary translation or 
runtime probe injection. The runtime overhead makes the 
binary instrumentation technique impractical for CE devices, 
which are very slow even without the instrumentation. Most of 
this overhead is a result of the generality of binary 
instrumentation tools, which enables deeper analysis in 
addition to function call tracing. 

To address the above issues, LITIFUT, the acronym of 
Link-Time Function Tracer, which is a link-time binary 
rewrite tool for function call tracing in CE devices, is 
proposed. Because it performs function call tracing only, 
LITIFUT minimizes runtime overhead while adding the 
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convenience of binary instrumentation tools. An embedded 
software application applying LITIFUT runs as fast as one 
without it. In addition, it is very easy to apply LITIFUT. A 
developer easily writes trace recording subroutines to fit for 
the specific development environment and for its own tracing 
purpose. The tracing option is turned on and off during link-
time by simply setting an appropriate environment variable. 

For our study, the prototype of LITIFUT is implemented for 
the two most popular embedded processor architectures. It was 
then evaluated with a real-world consumer electronics 
workload and two performance benchmarks. 

The rest of this paper is organized as follows: Section II 
introduces the design principles of LITIFUT and Section III 
presents its implementation details. The profiling automation 
front-end of LITIFUT is presented in Section IV. Section V 
evaluates the prototype implementation. Finally, Section VI 
concludes the research. 

II. DESIGN 

The design of LITIFUT is inspired by the probe injection 
mechanism used in dynamic binary instrumentation tools such as 
KProbes [12], SystemTap [13], DTrace [14], and so on, except 
that it is statically performed at link-time. With minimized 
runtime overhead, it eliminates the necessity of user intervention 
in source-level instrumentation by rewriting the binary file. 

A. Goal 

The desired properties of the proposed function call tracer 
are as follows: 
 Because it is targeted for CE devices, it should support, but 

not be restricted to, embedded processors. 
 It should be able to efficiently trace all functions in the 

binary file, except user-defined exceptions. 
 It is better to have as little overhead as possible. The 

overhead accounts for both additional memory capacity and 
CPU cycle. 
 It should be easy to use. Less user intervention is most 

desirable, even without build system modification. 
 To enable deeper analysis, it should support dynamic shared 

libraries. 

B. Architecture 

LITIFUT rewrites a binary file at link-time. It performs this 
function by using a mechanism similar to probe injection, 
which substitutes a machine instruction to call a probe that 
emulates the original instruction, while also executing the 
additional job that the probe was meant to perform. 

Unlike dynamic instrumentation schemes, LITIFUT 
statically inserts a tracer module into the binary. It makes the 
tracer efficient and able to trace from the beginning of the 
execution. For this purpose, LITIFUT uses the linker to link 
the tracer module object files in addition to the original object 
files. If the source object files are not available, a disassembly 
and reassembly technique [15], other than using the linker, is 
applicable. However, LITIFUT assumes that the object files 
are always available because the function call tracers are most 
valuable in development phases. 

 
Fig. 1. The architecture of LITIFUT. The binary rewriter, the tracer 
module, and the automation front-end are the building blocks of 
LITIFUT. The front-end uses the linker to produce a binary file to 
rewrite from the original object files. 

 
To instrument function calls, LITIFUT modifies existing 

function calls to instead jump to the tracer module, which 
records and emulates each function call on runtime. It is the 
binary rewriter’s job to overwrite function call instructions in 
executable and library files. The rewriter also records the 
overwritten function call instructions for the tracer module to 
emulate them on runtime. The binary rewriter and tracer 
module must be architecture-dependent to be able to 
correctly rewrite and emulate the function call machine 
instructions. 

For ease of use, LITIFUT provides an automation front-
end, which works as the wrapper of a compiler toolchain 
and simplifies the process of linking the tracer module and 
rewriting the binaries. Using this front-end, a developer can 
easily enable and disable the function call tracer by simply 
turning on and off a specific environment variable. 

The overall architecture of LITIFUT is illustrated in Fig. 
1. The figure depicts how each module interacts to trace 
function calls in CE devices. 

III. BINARY REWRITING 

The binary rewriter is designed based on function call 
application binary interfaces (ABIs) for embedded 
processors [16], [17]. The binary rewriter substitutes each 
function call instruction that is a 4-byte machine instruction, 
into one jump instruction that is directed to the tracer 
module. Because one machine instruction is replaced by 
another, no additional address adjustment is needed; 
therefore no update to, even existence of, the relocation 
information is required. 

For the instruction overwrite, the rewriter should have the 
following mechanisms for each processor type. First, the 
rewriter should be able to differentiate instructions from data 
in the binary file. Second, the rewriter should have a 
mechanism to filter function call instructions from all 
instructions in a software application. Finally, the rewriter 
should choose one machine instruction that jumps to the tracer 
module without relocation. 
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A. Function call application binary interfaces 

For each processor and runtime environment, the function 
call ABI is defined for compatibility. With them, various 
compilers from various languages can cooperate to produce a 
working binary file. The ABI constitutes a few function call 
standards. It defines the machine instruction to use for a 
certain circumstance, the parameter and the return value 
passing standards, the use of stack frames, and the register 
usages. When a compiler is compatible with the ABI, there 
must be a limited number of function call patterns in the 
executable files. Therefore, one can assume that there is no 
function call that is out of that pattern when it is built using 
such a compiler. 

In an embedded processor, henceforth called EMBProc A 
[16], function calls are implemented using the instructions 
outlined in Table I. Each of these instructions uses an 
immediate value, a register, or a value stored in memory as a 
reference to the target function address. After the function 
call, the return address is stored in the lr register, and the 
sp register should reference an appropriate stack address to 
store local variables, and so on. Function parameters are 
passed using r0-r3 registers and the stack, and the return 
value is set to the r0 register. 

The compiler for EMBProc A translates static function 
calls using the bl instruction, which relatively jumps to a 
location within the 64MB boundary. Therefore, a static 
function call cannot jump to a function that is located beyond 
the boundary. Whenever the linker detects that the function 
call exceeds the 64MB boundary, it generates a veneer 
function that bridges the gap between caller and callee. A 
veneer function indirectly jumps to the destined function 
using an ldr $PC, [$PC-4] instruction with the target 
address stored beside the ldr instruction. The long-distant 
function call is then replaced by a call for veneer function. 
Because the veneer function does not change all the registers 
including the lr register but the pc register, the callee 
correctly runs and returns to the caller without any 
modification. 

An ldr instruction is also used for the procedure linkage 
table (PLT) to indirectly call dynamic shared library 
functions. However, it loads the address in the global offset 
table (GOT) in place of the address stored beside it. 

Function call instructions in the other processor—here, 
EMBProc B [17]—are simpler than those of EMBProc A. 
There are only two instructions in use and they are absolute 
jump instructions. Although there are additional relative 
branch instructions, they have a 256 KB addressing limitation 
because only 16 bits of the instructions are used for an 
immediate. Therefore, they are not suitable for generic 
function calls because they complicate the compiler and linker 
implementation. The return address should be stored in the ra 
register, and the sp register holds the stack pointer. 
Parameters are stored in s0-s9 registers and in the stack, and 
the return value is stored in v0 and v1 registers. The jr 
instruction is used for the PLT function call, similar to what 
the ldr instruction does in EMBProc A. In most operating 
systems, the jalr instruction uses only the t9 register for 
function address holding, and t7 and t8 registers are reserved 
for the dynamic linker. 

B. Binary rewriter 

The binary rewriter overwrites all function call instructions 
in the binary into the call for the tracer module. The overall 
operation of the binary rewriter is illustrated in Fig. 2. At first, 
the rewriter filters out the function call instructions. For this 
purpose, it segregates instructions from the data and checks 
whether or not each instruction is a function call instruction. 
All the instructions are stored in .text, .init, and .fini 
sections. However, there might be read only data in the code 
sections, because some compiler optimization algorithms store 
function static constant variables within the instructions of the 
function. In this case, the compilers for EMBProc A generate 
mapping symbols such as $a, $d, and $t, to mark regions for 
instructions, data, and thumb instructions, respectively [16]. In 
the case of the compilers for EMBProc B, each symbol table 
entry for functions in the ELF file contains an (address, size) 
pair of the range wherein the instructions are stored. 

Next, the rewriter checks whether or not each instruction is 
a function call. The identification is performed based on 
function call ABIs for the specific architecture. LITIFUT 
rewrites instructions for static function calls and virtual 
function calls only, not for PLT and veneer functions. This is 
because PLT and veneer function calls can easily be post-
processed after the application execution. 

TABLE I 
EMBEDDED PROCESSOR FUNCTION CALL INSTRUCTIONS 

Processor Instruction Type Next PC Usage  

EMBProc A 

bl / blx (I) Immediate PC + Immediate Static functions  

blx (R) Register Value of R Virtual functions  

ldr $PC, (R) Memory Value of address R PLT, veneer functions  

EMBProc B 

jal (I) Immediate PC31..28  I25..0  00 Static functions  

jalr (R) Register Value of R Virtual functions  

jr (R) Memory Value of R PLT  
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Fig. 2. Operation of binary rewriter and tracer module. The binary 
rewriter substitutes all function calls to instead jump to the tracer module, 
which in turn appropriately emulates and records the function call. 

 
Finally, the function call is substituted by a replacement 

instruction. In EMBProc A, the only instruction that directly 
jumps to the tracer module is the bl instruction. Because the 
bl instruction cannot jump beyond the 64 MB range, the 
assembly stub of the tracer module must be repeatedly inserted 
to be in the vicinity of the bl instruction. This is the job of the 
automation front-end, as explained in Section IV. 

In EMBProc B, the jal instruction performs the same role 
as the bl instruction in EMBProc A. Unfortunately jal is an 
absolute jump instruction, so that special care is required when 
it rewrites the dynamic shared libraries (See Section III-F). 

While the function call instruction is replaced, the original 
instructions are gathered in an instruction DB. Each record in 
the DB is a pair of (address, instruction). The instruction DB is 
used to emulate the function call in the tracer module, as 
explained in Section III-C. 

C. Tracer module 

The tracer module emulates the original instruction to jump 
to the appropriate function after it records the function call in 
the log. On runtime, every function call jumps to the tracer 
module. The control flow first reaches the assembly stub, 
which saves all the registers, calls the routines recording 
function call traces and emulating function calls, and finally 
jumps to the original target function. The assembly stub 
implementation detail is architecture-dependent. 

In EMBProc A, the stub jumps to the originally intended 
function by setting the pc register to the emulated 
next_pc value. The emulation is performed by calling 
calc_next_pc() function with the saved instruction as 
an argument. From the many ways of manipulating the pc 
register, the assembly stub uses the method of modifying 
the register value saved in the stack before restoring it at 
the end of the stub. In this way, all registers except the pc 
register hold identical values before and after the stub 
execution. 

Algorithm 1. Assembly stub for the tracer module 

procedure embproc_a_stub()  
stack ← push(registers)  
instr ← find_instruction($lr)  
next_pc ← calc_next_pc(instr)  
record_trace(next_pc)  
stack[pc_offset] ← next pc  
registers ← restore(stack) 

procedure embproc_b_jal_stub() 
stack ← push(registers - $t9)  
next_pc ← find_instruction($ra)  
record trace(next_pc) 
$t9 ← next_pc 
(registers - $t9) ← restore(stack) 
jr $t9 

procedure embproc_b_jalr_stub() 
stack ← push(registers)  
record_trace($t9) 
registers ← restore(stack)  
jr $t9 

 
Searching for the saved instruction from the instruction DB 

is implemented as a binary search function 
find_instruction() using the return address (lr 
register) as a key. 

In EMBProc B, two assembly stubs are implemented: one 
for jal; the other for jalr. Because the jalr instruction 
always uses the t9 register to hold the address of the callee, 
using a special stub eliminates the need for saving the jalr 
instructions, which thereby reduces the memory requirement 
for the instruction DB. 

The jal stub performs the same way as the one for 
EMBProc A, except it directly uses the address. Because there 
is only one type of instruction that holds the target address as 
an immediate, the emulation can be conducted at link-time, 
which releases the burden of runtime emulation overhead. 

The jalr stub is the simplest of all the stubs. It only saves 
some registers modified by the stub, calls the 
record_trace() function to make a function call log, 
restores the registers, and jumps to the function that the t9 
register references. 

The tracer module must be loaded before the binary file 
begins running. Therefore, the module is statically loaded in 
the binary file. LITIFUT uses the static linker by modifying 
the linker command line to link the object files of the tracer 
module. 

D. Two pass scheme 

The binary rewriter creates the instruction DB as a by-
product of its operation. The instruction DB must be loaded 
before the tracer module emulates the function call for the first 
time. Without the DB, the emulation fails and, the program 
cannot proceed. There are many options wherein the DB is 
stored, such as in a raw file, a DBMS, or the binary file itself. 
LITIFUT stores the DB in the binary itself, because it can 
eliminate any dependency for the DB loading; the DB is 
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present in the address space whenever the binary file executes. 
The instruction DB is built as an array of (return address, 

instruction) in a C source code file. It must be compiled and 
linked to the binary along with the original object files and the 
tracer module. However, the DB is created after the binary 
rewriter has finished running. Therefore, it is required to run 
the linker and the rewriter twice. The first time, they build the 
DB; the second time, they rewrite the binary. 

The two-pass rewrite scheme, which is regarded as complex, 
can be reduced to a one-pass scheme using other binary 
rewriting tools [15]. However, it is simplified using the 
automation front-end, as explained in Section IV. 

E. Trace recording 

The tracer module supports various trace recording methods. 
If the developer determines what to record and where to store 
it, the module attempts to minimize overhead and user 
intervention. The developer can modify the 
record_trace() function to alter the behavior of the 
module. 

The tracer module supports the following functions by 
default. First, it can be configured to copy the trace file to a 
USB thumb drive when the trace stops. Because recent CE 
devices typically support USB thumb drives, the automated 
copy operation simplifies the process of transferring log files 
for analysis. 

Second, it supports a bulk-write option. By writing the 
traces in a large bulk, the tracer greatly reduces I/O overhead. 
However, this requires a thread-safe algorithm to correctly 
operate. 

Third, it supports multi-threaded applications. Because a 
lock-free atomicity-guaranteeing algorithm guards the 
recording process, it can safely record multi-core, multi-
threaded application traces. Considering the trend that CE 
devices employ multi-core processors, thread safety is a 
fundamental requirement nowadays. 

Last, it can be configured to de-duplicate the trace online 
using a bloom filter. Nevertheless, some CE devices have a 
storage device with scarce capacity if the operation of the 
device does not depend on it. To trace function calls for those 
devices, the trace size must be minimized to fit in free 
memory space. In that case, the bloom filter becomes useful 
because it is better than losing all traces, even though there is 
little possibility of missing some function calls. 

Using the default trace recorder, CE software developers 
might do most of their function call trace analysis. 

F. Dynamic shared library 

A dynamic shared library file is dynamically loaded into a 
free virtual memory region unlike an executable file, which is 
always loaded into the specified address in the ELF header of 
the file. Therefore, the runtime address of the dynamic shared 
library always changes whenever the library is loaded. There 
have been efforts to make dynamic shared libraries load into 
fixed memory addresses [18]; however, it is not always 
guaranteed. Because of the dynamic nature of runtime 
addresses, a program linkage table (PLT) and global offset 

table (GOT) are devised to reference functions and variables 
in dynamic shared libraries [19]. 

The dynamicity of addresses also affects the 
implementation of the tracer module. The module uses the 
return address of a function call to search the instruction DB, 
however, the address changes every time the library loads. 
Therefore, the stub adjusts the return address by subtracting 
the base address where the library is loaded. The base address 
can be easily obtained by a simple calculation: 
runtime_address - ELF_address. For the calculation, the stub 
function address in the ELF file is stored when the library is 
rewritten. 

In EMBProc B, where only absolute jump instructions are 
supported, an absolute jump instruction cannot directly 
reference a function in the library, because the address of the 
function is unpredictably determined at runtime. Therefore, 
the library function of EMBProc B is indirectly called by 
calculating the address from the frame pointer register. For 
this reason, all function calls in a shared library are 
implemented using jalr, the register jump instruction. 

The jal instruction used for the rewriting likewise cannot 
directly call the tracer module if it is inserted into the library. 
Therefore, it tries to call the module in the executable; 
however, the 256MB address limitation prevents the function 
call from occurring. The library loads into the dynamic loader 
predetermined memory region (0x200000000x2FFFFFFF), 
and the address range lies too far from the module in the 
executable (0x00000000-0x0FFFFFFF). 

Therefore, it is required to use a tiny bridging stub that 
bridges the gap between the library function calls and the 
tracer module in the executable. The stub indirectly calls the 
module in the executable to determine the address of the 
module, and it has a fixed address near libraries (0x20002000) 
because it is mmapped to the address by the executable. The 
function call in the library is substituted to a call for the 
bridging stub by the rewriter so the call redirects to the 
appropriate address. Mapping of the stub occurs the first time 
that the function in the executable is called. Because a 
function call inside a library occurs after at least one function 
is called by the executable, there is no possibility of a library 
function calling another function without the stub. 

IV. AUTOMATION 

It is difficult to use the binary rewriter, because the rewriter 
takes multiple steps with many hard-to-derive parameters. 
Such parameters include the address and size of a function that 
will be excluded from rewriting. To simplify the process, the 
automation front-end is devised. From the fact that it requires 
two linker invocations, the automation front-end replaces the 
linker command line to build rewritten binary files as if it is 
one of the feature of the linker. This attribute makes LITIFUT 
a link-time binary rewriting tool. After the trace file is created 
by running the rewritten application in the target CE device, 
the raw trace file must be post-processed to be human readable. 
The automated postprocessor creates final trace files by 
reorganizing function call traces for each executable file and 
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library file. The automation front-end makes the binary 
rewriting and trace processing an easy task by simply enabling 
an environment variable and running a post-processor 
application. 

A. Linker substitution wrapper 

The automation front-end replaces the linker using symbolic 
links. A linker invocation instead executes the front-end, 
which automatically runs all the tasks a binary rewriter must 
perform. These tasks constitute, copying and compiling the 
tracer module, executing the modified linker command line 
that builds a binary file, including a tracer module, and 
rewriting the binary file. 

An environment variable is used to notify whether the 
automation front-end should work as a linker or rewriter. If the 
environment variable is not defined, or if it has an invalid 
value, the front-end only runs the linker to produce the 
unmodified binary file. 

Another task of the front-end is to resolve the symbol table. 
Given a list of functions, object files, and library files that 
should not be rewritten, the front-end finds out the list of code 
sections that all items in the list take. It then passes the list to 
the rewriter in the command line to ignore the code sections in 
the rewrite processing. The code sections that each item takes 
can be found from the linker map file, which is created by a 
special linker command line option. (For the GNU ld, it is the 
-Map option.) 

B. Trace post-processor 

The trace post-processor combines the trace files to produce a 
unified view of the function call traces. The post-processor 
solves the problems of the raw traces as follows. First, because 
the rewriter does not instrument the veneer function, the 
function call trace contains the address of the veneer function 
instead of the function that is called by the veneer function. To 
correctly understand the function call process, the full log 
should contain both the veneer function and redirected function. 

Second, the developer cannot identify the runtime address 
of a dynamic shared library by the raw trace only. While the 
application executes, the Linux kernel exports the 
/proc/(pid)/maps file that contains all the memory 
mapping information. From the file, the address where each 
library file is loaded can be easily resolved. Therefore, the 
tracer module copies the /proc/(pid)/maps file 
alongside the trace files when the trace stops and the trace file 
becomes ready. 

Third, it contains the address of a PLT entry for each of the 
dynamic shared library function calls. The target function 
address can be found in GOT, however, it can be retrieved 
only on runtime. Nevertheless, it is possible to consult the 
symbol table for the GOT entry that is in a one-to-one 
mapping relationship with the PLT entry. Because the symbol 
(a function name) is more human readable than the address 
itself, it is sufficient to log it as ‘a function called through a 
PLT entry’. 

Last, more than one process must be simultaneously 
analyzed. Because more than one application can share a 

dynamic shared library, a combined shared library trace is 
required if one desires to analyze the behavior of the library. 
Additionally, two or more applications can interact using the 
IPC mechanism. For this purpose, the post-processor is 
designed to load multiple application traces at once, and it is 
able to produce a combined function call trace to understand 
the inter-operations. 

The trace post-processor implements all these features so 
that a useful human readable trace output can be produced 
from the raw trace files. The basic output is a series of names 
of functions called. For more detailed analysis, one can add an 
additional post-processor module to it. 

V. EVALUATION  

All instrumentation tools accompany the observer effect 
that affects the operation of the instrumented software. In CE 
devices, the slowdown of the software can result in a 
malfunction of the device, particularly timing-sensitive 
devices (i.e., I2C devices). Moreover, the additional memory 
demand can result in a memory shortage, which causes the 
whole system to misbehave. Finally, the trace I/O matters 
because it can slow the software performance and waste scarce 
storage resources. 

In this paper, measurements are carried out on two smart 
digital TV (DTV) platforms, one with a dual-core EMBProc A 
processor, and the other with a single-core EMBProc B 
processor. The DTV with EMBProc A has 1GB of RAM, 
62MB of free internal storage space, and three USB ports to 
connect USB devices such as a USB thumb drive. The DTV 
with EMBProc B has weaker computing power, with 512MB 
of RAM, 30MB of empty storage capacity, and only one USB 
port.  

To evaluate the performance of LITIFUT, three types of 
workloads are used on both architectures. First, the CPU 
intensive workload that serially runs numeric sorts, string 
sorts, bit manipulations, float-point manipulations, Fourier 
coefficient calculations, Huffman compressions, IDEA 
encryptions, and neural network simulations. Second, the I/O 
intensive workload that performs random file system reads 
and writes on a file. Last, a DTV application is used as a 
compound real-world workload. Properties of these 
workloads are listed in Table II. The DTV application for 
EMBProc B has less functional features than the one for 
EMBProc A. It is because that platform is used for low-end 
DTVs to lower the price. In addition, executable files for the 
CPU-intensive workload and the I/O-intensive workload has 
different numbers of function calls for both architectures, 
because static libraries linked to the benchmark application 
are not identical. 

A. Memory requirement 

The increase of the binary file size by adding the tracer 
module is the main cause of memory overhead. This could be 
easily measured by the size of the tracer module. The tracer 
module size is dependent on the number of function call 
instructions, because the DB comprises most portion of the 
module. This is analyzed in Table III. 
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The tracer module size becomes almost 10% of the original 
application in EMBProc A, which is quite large compared to 
the EMBProc B, where it takes 5% in the executable file and 
close to 0% in the library file. The reason for this difference is 
as follows. First, the module for EMBProc B does not save the 
jalr instructions in the instruction DB. It dramatically 
decreases the DB size. Second, the library function calls are 
solely implemented by the jalr instruction. That makes the 
trace module size of the library almost zero by requiring only 
the tiny stub, which takes 848 bytes but is rounded up to a 
page because the mmap() system call works in page units. 

The memory consumption of the function call tracer is 
comparable to that of the source-level instrumentation and 
dynamic binary instrumentation. The source-level 
instrumentation inserts function calls at the entry and exit of 
all functions, which uses 32 bytes for each function. This 
resulted in a total of approximately 4.1 MB for the DTV 
executable file of EMBProc A. It is almost 2.5 times larger in 
EMBProc A, but only 1.7 times larger in EMBProc B. 
However, for the CPU-intensive workload, LITIFUT is more 
efficient, because there is almost the same number of 
functions compared to function calls. This memory overhead 
is tolerable, considering the advantages of LITIFUT, such as 
the possibility of tracing functions without source code or of 
tracing functions in dynamic shared libraries. Because the 
dynamic binary instrumentation uses a data structure similar to 
LITIFUT, the memory consumption is larger than or (in the 
best case) equal to that of LITIFUT. Additionally, it carries 
the runtime overhead of rewriting instructions at runtime. 

B. Performance overhead 

Performance degradation induced by tracing affects the 
correct operation of the device, and the user experience, while 
function calls are traced. The application execution time is 
measured to investigate the efficiency of LITIFUT, as depict in 
Fig. 3. The measurement is conducted in three configurations: 

without tracing (no trace), with tracing but without bulk write 
(no bulk), with tracing and bulk write (bulk write). Because the 
CPU intensive workload repeatedly runs a set of benchmark 
algorithms for a specified time, the execution time is calculated 
to the length of time required to run the string sort benchmark 
1,000 times. Without bulk write, each function call writes its log 
to the trace file, which issues the system call each time. The 
DTV workload did not work correctly, which produced a 
number of error messages, because it has many timing-aware 
function calls interacting with I2C devices in the DTV platform. 
In addition, The CPU intensive workload runs indefinitely, 
more than an hour, so that it is not measured. The bulk write 
scheme solves this problem but increases the memory usage by 
the size of the buffer, which is a negligible overhead. 

 
Fig. 3. Execution time overhead of LITIFUT. With bulk write, LITIFUT 
exhibits almost no overhead for I/O intensive and compound workloads. 
 

With bulk writing, the execution time increases by 
approximately 40% for the CPU-intensive workload because it 
intensely performs function calls without idle time. This is one 
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TABLE II 
PROPERTIES OF WORKLOADS USED FOR EVALUATION 

 
EMBProc A EMBProc B 

CPU 
intensive 

I/O 
intensive 

DTV 
executable 

DTV 
library 

CPU 
intensive 

I/O 
intensive 

DTV 
executable 

DTV 
library 

Binary size (bytes) 669,256 401,335 109,752,492 5,864,948 883,460 416,996 91,411,476 2,404,460 

Functions 1,081 179 128,434 8,484 1,081 179 97,341 2,107 

Static calls 1,063 5,207 1,210,466 77,777 4,927 6,995 687,101 0 

PLT / Virtual calls 33 2 111,339 722 14 2 218,410 31,163 

 
TABLE III 

MEMORY OVERHEAD OF LITIFUT COMPARED TO SOURCE-LEVEL TRACING 

 
EMBProc A EMBProc B 

CPU 
intensive 

I/O 
intensive 

DTV 
executable 

DTV 
library 

CPU 
intensive 

I/O 
intensive 

DTV 
executable 

DTV 
library 

DB size 9,328 41,672 10,574,440 627,992 40,056 55,960 5,496,808 0 

Module size 11,464 11,464 11,464 11,464 9,984 9,984 9,984 4,096 

Source-level 34,592 5,728 4,109,888 271,488 34,592 5,728 3,114,912 67,424 
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of the worst-case scenarios, which therefore proves the 
efficiency of LITIFUT. The I/O-intensive workload and DTV 
workload represent that the CPU overhead can be hidden by 
the idle time of the application. 

C. Storage consumption 

The trace file consumes storage space. The size of a trace 
file is dependent on the number of function calls, which in 
turn depends on the application execution time. Therefore, a 
trace file size can grow indefinitely, evading the precious 
storage capacity. In the DTV platform used for the evaluation, 
the internal storage capacity is very small, with only 62MB 
free, such that the trace file size has to be minimized. 

Using the de-duplication feature of LITIFUT, the size of the 
trace file is minimized as shown in Table IV. Because the de-
duplication feature can be used only for aggregation analysis, 
the sequence analysis workload cannot take advantage of it. 
Considering other tools cannot be applied even for 
aggregation analysis, due to the scarcity of the resources, 
LITIFUT becomes invaluable for the development of CE 
devices. 

TABLE IV 
TRACE FILE SIZE WITH / WITHOUT DE-DUPLICATION 

 CPU intensive I/O intensive DTV 

No dedup 65,921,024 16,862,656 4,734,976 

Dedup 2,552 1,364 32,768 

 

D. Instrumentation delay 

Because LITIFUT repeats linking and rewriting process 
twice, it has a longer linking time than a normal link process. 
The instrumentation delay, however, can be disregarded in 
most cases because the target binary file is very small, 
whereby it takes less than a minute. The linking time of the 
DTV executable is exceptionally long, approximately 137 
seconds on average. Therefore, the whole instrumentation 
delay takes approximately 5 minutes, including the binary 
rewriting time. Considering the compiling delay in the 
compiler-based method, and the runtime overhead in dynamic 
rewriting schemes, the instrumentation delay can be 
disregarded, which makes LITIFUT a viable solution. 

VI. RELATED WORK 

Because function call traces are very useful in software 
development processes, different tools have been developed to 
trace function calls in various ways. 

Function call traces can be obtained using a compiler and a 
linker feature that adds instrumentation stub calls at function 
entry and exit [5]. In addition, Lattner et al. proposed a 
compiler-based platform for flexible instrumentation [21]. In 
that case, source code is required but is not always provided, 
particularly in embedded environments. Therefore, an efficient 
method to trace from binary files is needed. 

A static binary rewriting method can be applied to add 
instrumentation calls in an executable file. For example, 
Smithson et al. proposed a novel binary rewriting method that 
disassembles a binary file and reassembles modified assembly 

code [15]. A more sophisticated binary rewrite tool [22] 
analyzes a binary file to discover program components and 
then inserts instrumentation stubs per instruction basis; 
however, it is built for a specific desktop environment, unlike 
LITIFUT, which works for CE devices. 

The probe injection technique that inserts instrumentation 
routines during runtime using a breakpoint instruction can also 
be used to trace function calls in a running process [11], [12]. 
The instruction substitution process in LITIFUT is motivated 
by the probe injection procedure; however, LITIFUT has a 
better runtime performance than that method, because 
LITIFUT modifies the binary file while it is linked, not while 
it is running. 

The dynamic rewriting scheme [5]-[9] rewrites pieces of a 
running program to alter the behavior of them and caches the 
rewritten instructions to avoid repetitive rewrite tasks. It also 
supports the function call tracing feature; however, its 
runtime processor and memory overhead are too heavy to be 
practical for CE devices with feeble processors and poor 
resources. 

The LITIFUT approach is a hybrid solution combining 
aspects of the probe injection method and the static binary 
rewriting; LITIFUT uses a linker to insert the probe stub and a 
binary rewriter to substitute function call instructions. 
Therefore, it has a runtime processor and memory overhead 
that can be categorized between the compiler-based approach 
and static binary rewriting method. 

VII. CONCLUSION 

Despite the rapid improvement of embedded hardware, the 
even faster growth of software component complexity often 
induces a sluggish response in state-of-the-art consumer 
electronics, such as DTVs and smart phones. The larger the 
software code, the more improvement the code optimization 
will earn. Consequently, the role of software optimization in 
the development of CE devices is becoming crucial. 

A function call tracer is one of the most quintessential 
performance optimization tools. However, existing function 
call tracers, which were primarily designed for PCs and 
servers, are not adequate for consumer electronics for various 
reasons. 

In this paper, a function call tracer named LITIFUT is 
proposed for consumer electronics development. By 
employing the linking time binary rewriting scheme, LITIFUT 
performs fast under a limited amount of computational 
resources. In addition, it is able to analyze even when the 
source code of object files is unavailable.  

The prototype of LITIFUT is implemented for two popular 
embedded processor architectures, and it is evaluated with 
DTV operating software and two other benchmark suites. The 
evaluation showed that LITIFUT added an insignificant 
amount of execution time to the DTV software and only up to 
10% of memory usage. The de-duplication feature of 
LITIFUT saved approximately 99% of storage space for 
collected data. Based on these results, it is concluded that 
LITIFUT is perfectly suited for the CE devices. 
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