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Abstract — Memory deduplication, which can remedy memory 

scarcity in mobile systems, can hardly be used due to its high 
computation cost. This paper proposes a computation efficient memory 
deduplication scheme that avoids unnecessary computations for 
memory deduplication. To make it efficient, the proposed scheme gets 
rid of pages, which are unlikely to be deduplicated, from the target of 
memory deduplication. This exclusion is performed in time-domain and 
in space-domain by exploiting the characteristics of mobile 
applications. The prototype implementation shows significant 
computation cost reduction while providing the same memory savings 
as in previous approaches. The saved memory is used for improving 
application launch time as well.1 

Index Terms — Smartphone, Memory deduplication, Energy 
efficiency, Memory management  

I. INTRODUCTION 

In these days, mobile smart devices, such as smartphones and 
smart tablets, are replacing other single purpose devices such as 
MP3 player, portable media player (PMP), and sometimes laptop 
PCs. Since a smart device is a general-purposed mobile device, it 
can perform multiple functions which multiple single-purposed 
devices have provided. A mobile smart device, however, has 
restricted resources such as CPU, memory, and storage because 
of its limited energy source (small-sized battery) and form-factor. 
Thus, efficient use of the limited hardware resources is important 
[1]. 

Although the computing power of a smart device is limited due 
to the constrained hardware resources, customers want to have 
better user experience. One of the important metrics that evaluate 
user experience is application-launching time [2]. In order to 
reduce the effective launch time of applications, many mobile 
application frameworks support application caching [2], [7]. Once 
an application is executed, it is cached in memory so that a user can 
quickly reuse the application. Accordingly, the more applications a 
system caches, the faster launch time it can provide. A drawback is 
that since smartphones have limited main memory capacity, the 
number of cacheable applications is also limited.  

One of ways for increasing the number of cached applications 
within a fixed physical memory size is to increase memory usage 
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density in a system. Memory deduplication is a software-based 
approach to increasing memory density [4], [5]. By merging 
identical pages within a system, this approach can secure more free 
memory. The saved memory pages can be used for caching 
additional applications. This approach, however, incurs significant 
computation overhead to a system because inspecting identical 
pages is highly CPU-intensive workload [6]. Although this CPU 
overhead is not a significant problem in server systems because 
those systems have unlimited power source, mobile systems cannot 
adopt the memory deduplication approach due to power concern.  

This paper proposes an efficient memory deduplication scheme 
that reduces the CPU overhead accompanied by the memory 
deduplication. To reduce the CPU overhead, this scheme only 
scans memory pages that are likely to be deduplicated. The hints 
about the likelihood are derived from the characteristics of mobile 
application framework and the memory deduplication pattern in 
mobile systems. Briefly, in time-domain, cached application’s 
pages are only scanned once and never scanned again until the 
application becomes active state because cached applications do 
not change their memory states. In space-domain, only small part 
of virtual pages of a process is the target of memory deduplication 
because the other part of pages has very low probability of being 
deduplicated. By filtering out such pages, the proposed scheme can 
greatly reduce the memory inspection overhead while providing 
mostly the same amount of memory savings a conventional 
memory deduplication approach can provide.  

The proposed scheme is implemented on a well-known mobile 
smartphone and evaluated with real-world mobile applications. The 
evaluation results show that the deduplication cost of the proposed 
scheme is only 2% and 19% of the previous approaches. Due to the 
minimized deduplication cost and secured additional memory, the 
proposed scheme improves application launch time by 10% 
compared to the case without memory deduplication.  

The rest of this paper is organized as follows. The following 
section describes the background associated with the proposed 
scheme and reviews the related work. Section III explains the idea 
of the proposed scheme and Section IV shows the implementation 
issues. Section V evaluates the proposed scheme. The last section 
concludes this paper.  

II. BACKGROUND AND RELATED WORK 

A. Background 
Many mobile application frameworks support various features 

to improve user experience. Among them, several features, such 
as application caching and fork-dlopen execution model, can 
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provide hints for reducing the memory deduplication overhead. 
This subsection illustrates the background of those features and 
hints associated with them.  

1) Application Caching 
Application caching is an approach to improving user 

experience by caching applications when a user finishes 
interaction with them. Since mobile devices are general-
purposed systems, these can run multiple applications. This 
multi-programming environment, however, does not indicate 
simultaneous execution of multiple applications. Because 
mobile devices usually have a small screen, only one or a few 
applications run at a time. Except for a foreground application, 
other applications no longer interact with a user until those 
become active again. Application caching is that instead of 
killing processes hosting the finished applications, the 
processes are kept live in memory as depicted in Fig. 1. When 
a user wants to launch an application hosted by a cached 
process, its launch time can be greatly reduced as compared to 
spawning a new process. Fig. 2 shows the launch time 
comparison between spawning a new process and reusing a 
cached process. As shown in the figure, the application 
caching shows 3.5 - 10 times faster launch time than spawning 
a new process.  

The other benefit of application caching is that when a user 
visits a cached application again, the user can spontaneously 
resume the interaction with the application. Because a cached 
application keep the last state a user have interacted (e.g., the 
last stage played in a game), a user do not need to input 
additional command to make the application move to the last 
state. This benefit also greatly reduces time to resume an 
application by avoiding the additional steps to recover the last 
state.  

The drawback of application caching is memory space 
cost for caching each application process. Table I shows the 
memory cost for caching well known mobile applications. 
The memory cost varies across applications and the average 
is 20 MBs. Since the application caching can boost the 
launch time of applications in a system, the more 
applications a system caches, the better user experience the 
system can provide. A mobile smart device, however, has 
limited memory capacity due to many factors, such as unit 
cost, power consumption and small form factor. Accordingly, 
the number of applications a system can cache is limited. 
When a system has memory shortage, an operating system 
reclaims memory pages of a cached application by killing 
the application (the Killed arrow in Fig. 1). This memory 

reclamation scheme in process granularity is denoted as low 
memory killer (LMK) [3], [7]. 

The application caching is the motivation of the need for 
securing more memory by using memory deduplication. The 
additional memory can be used for caching more application 
so that the possibility to launch an application from the cached 
state can increase. Therefore, the user experience of a mobile 
smart device will be improved. 

The hint the application caching can provide to memory 
deduplication is that the data stored in cached applications are 
stable. Since a cached application no longer interacts with 
users until it goes into foreground, the application does not 
need to be allocated CPU. Accordingly, the cached application 
never changes the content of the pages belonging to the 
applications. Since memory deduplication is based on the 
content of each page, this hint can rule out the target pages to 
be inspected for memory deduplication and can also determine 
the frequency of scanning of those stable pages. The details 
are explained in Section III-A. 

2) Fork-dlopen Execution Model 
Many mobile application frameworks adopt fork-dlopen 

execution model rather than fork-exec execution model. The 
fork-exec model is traditionally used application execution 
model in Unix-like systems. In this model, a parent process 
forks a child process and calls an exec-like system call to 
replace the address space of the child process into a new one 
as depicted in Fig. 3. Loading an executable binary and its 
associated libraries occur during this phase. The drawback of 
this model is that when an application uses a lot of libraries, 
loading the libraries slows down the launch time of an 
application. Since mobile applications are highly dependent to 
many application framework libraries [18], their launch time 
can be slowed down. 

Fork-dlopen execution model is better than the fork-exec 
model in this case. Using this model, a parent process already 
loads commonly used application libraries in its address space. 
When to run a new application, it forks a child process by 

 
Fig. 2. Launch time of applications in three cases: spawning a new 
process, resuming a cached application, and resuming a cached one whose 
memory pages are deduplicated so copy-on-write-protected. 

 
TABLE I 

MEMORY COSTS FOR CACHING APPLICATIONS 

Application Memory Cost Application Memory Cost 
Phone 14.3 MB SNS2 18.6 MB 
SMS 5.7 MB Map 32.4 MB 
SNS1 24.5 MB Browser 65.1 MB 
News 8.0 MB Email 6.7 MB 

Market1 8.8 MB Average 20.5 MB 

 
Fig. 1. State diagram of mobile applications 
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invoking the fork system call. Then, it only loads an 
executable of the desired application and calls the main 
function of the application as shown in Fig. 3. Accordingly, 
the number of binary loads is greatly reduced compared to the 
fork-exec model [19]. Many mobile application frameworks 
adopt this model due to the benefit of reducing application 
launch time. 

The main characteristic of this fork-dlopen execution model is 
that applications have mostly the same address space layout as 
illustrated in Fig. 4. Since many commonly used libraries and 
resource files are already linked in the parent’s address space, 
applications forked from the parent still have the same files 
linked at the same addresses. In addition, identical pages are 
usually found within the forked memory regions. By using this 
hint, the proposed scheme can get rid of pages that never provide 
sharing chances. The details are explained in Section III-B. 

 
3) Memory Deduplication 

Memory deduplication (or content-based page sharing) is a 
technique to secure free memory by merging identical pages. 
When there are multiple pages having the same content, 
multiple contexts (e.g., processes or virtual machines) can 
share one page so that the rest of the pages can be saved. To 
avoid data inconsistency from any modification to the shared 
page, page table entries to the shared page are copy-on-write 
protected. Any context performing updates to the shared page 
causes copy-on-write break and the context have a private 
copy of the shared page. 

Since memory deduplication is based on the contents of 
pages, inspecting memory pages in a system is essential. 
Usually, a thread is designated to inspect machine memory 
and find out identical pages. When identical pages are found, 
the thread conducts page merging. Since physical memory 
management is the role of operating system kernel, the thread 
runs at kernel-level. 

From the perspective of applications, the main cost of 
memory deduplication is copy-on-write protection. When 
merged (shared) pages are read-only accessed, it does not 
incur any overhead accessing the merged pages. When writes 
occur on the merged pages, however, the writes causes page 
fault and memory copies to perform copy-on-write.  

In mobile systems, this copy-on-write overhead is not 
significant in practice. Fig. 1 also includes the launch time of 
applications when each application’s memory pages are 
deduplicated so copy-on-write protected (Cached+Deduped). 
Since memory pages are copy-on-write protected, launching 
the application may cause several copy-on-writes. This 
overhead, however, does not overrun the benefit of 
application caching. In the figure, the launch time of 
applications whose memory pages are deduplicated is still 
faster than spawning a new process.  

The main overhead of memory deduplication from the 
perspective of system is scanning the page frames to find out 
identical pages. To find out same pages, every combination of 
pages should be compared in byte-by-byte granularity. This 
overhead is non-trivial. This overhead can be serious problem 
in battery-powered mobile devices. Accordingly, even if a 
mobile system has many identical pages, memory 
deduplication cannot be easily adopted without resolving the 
high scanning overhead. 

4) Memory Duplication in Smart Devices 
Basically, memory deduplication is based on the 

assumption that a system has many duplicated (identical) 
pages. This assumption is mostly true in virtualized 
environment. Indeed, memory deduplication is actively used 
in virtualized environments [4], [5], [8], [9]. Since a physical 
machine hosts multiple virtual machines (VMs) and the 
software as well as the data used in VMs can be similar [10]. 
Accordingly, by merging those identical pages, the physical 
system can obtain additional free pages. 

Whether many identical pages exist in mobile smart devices 
is an important issue because if no memory duplication occurs, 

 
Fig. 4. Similar address space of applications by using fork-dlopen 
execution model 

Fig. 3. Traditional Unix/Linux execution model (fork()-exec()) vs. Android
execution model (fork()-dlopen()) 
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memory deduplication is useless. A mobile device usually 
runs not multiple operating systems but a single operating 
system. Within a single operating system, memory pages are 
unlikely duplicated because operating system tries to 
minimize duplication of memory pages. For example, when 
multiple processes read the same file, an operating system 
maintains a single copy of the file within its page cache and 
the content is copied to each process. When a process forks, a 
child process shares the pages of its parent process albeit in 
copy-on-write protection.  

Memory duplication in mobile systems actually occurs due to 
the fork-dlopen execution model. Since mobile applications are 
highly application-framework dependent, they share a lot of 
shared libraries. It causes each application has similar address 
space layout as shown in Fig. 4. It means that when a data 
structure consisting of multiple pointers is stored in a process’s 
heap, the contents of the data structure are the same across 
multiple processes [11]. In addition, cached applications are at 
the same state waiting for the event to make them to be in 
foreground. Accordingly, the states of variables are mostly the 
same across cached applications. For example, a lock variable is 
frequently locked or unlocked when an application is in 
foreground. But, the lock variable is unlocked while the 
application is in cached state. For these reasons, a mobile system 
has many identical pages and memory deduplication can be 
applied to mobile systems to secure more memory [6].  

B. Related Work 

Waldspurger introduced content-based page sharing in a 
commodity virtual machine monitor [4]. It finds out identical 
pages and merges them based on the contents of pages. It also 
provides a knob to throttle the ratio at which a page scanning 
thread works. By adjusting the scanning speed (e.g., 100 
pages per 100 ms), the overhead can be reduced. But, when 
the inspection thread works slowly, it cannot quickly gather 
same pages [12]. This scheme also uses a hash table to reduce 
the number of memory comparisons. When two pages have 
the same hash value, then it compares both pages in byte 
granularity. 

 Kernel same page merging (KSM) is memory 
deduplication technique used in Linux kernel [5]. It not only 
targets kernel virtual machines (KVMs) but also processes 
running on the host Linux kernel. This scheme uses a red-
block tree to reduce the number of memory comparisons.  

To avoid the scanning of pages, several studies targets 
memory deduplication on cache pages of storage [8], [13], 
[14]. When multiple VMs read pages having the same block 
number, those pages are deduplicated because those have the 
same content. These approaches, however, are limited to 
cache pages while most of the sharing chances are on heap or 
data sections within a process in mobile systems.  

To reduce scanning overhead, Sharma et al [16] proposed 
scanning dirtied pages only scheme. When clean pages are 
scanned once, no additional scanning is required.  

Chen et al [17] exploits page access characteristics to 
reduce the number of memory comparisons during memory 

deduplication. Pages having similar access patterns have high 
likelihood of deduplication. This scheme, however, requires 
hardware modification that generates the foot print of access 
pattern of a page. 

Memory deduplication in mobile is first mentioned in Cells 
[15]. Because it enables multiple mobile systems to be hosted 
on a single smartphone device, the system can experience high 
memory shortage. Memory deduplication is applied to 
overcome the memory shortage. No attempts to minimize the 
overhead related to the memory deduplications were made.  

III. SELECTIVE MEMORY DEDUPLICATION 

Although a mobile smart device has many identical pages 
which can be deduplicated for saving memory, CPU costs 
caused by memory deduplication should be resolved. 
Otherwise, excessive use of CPU will drain battery quickly. 

The main idea of the proposed efficient memory 
deduplication scheme is to prune the target pages to be 
inspected for memory deduplication. By getting rid of unlikely 
to be deduplicated pages, the deduplication thread does not 
need to consume unnecessary CPU cycles. By carefully 
selecting the pages not to be inspected, the amount of memory 
savings provided by the memory deduplication can be the 
same as that of an uncontrolled scheme. 

The hints are arisen from the specific characteristics of 
mobile applications. The first subsection gives the idea of 
pruning pages in each process based on the scheduling 
information. The next subsection provides how the proposed 
scheme selects likely to be deduplicated pages within an 
application. The last subsection gives implementation issues 
related to the proposed ideas.  

A. Pruning Pages in Time Domain 

Since memory deduplication is based on the contents of 
pages, scheduling information can give a great hint to whether 
to inspect a certain memory pages or not. Every content 
update on a process’s memory pages occurs by store 
instructions on CPU. Accordingly, when a process is not 
allocated CPU, it is guaranteed that the memory pages 
belonging to the process are not updated. From this point, 
when pages in a process are inspected for memory 
deduplication, until the process is scheduled on CPU, no 
additional inspection is needed [16]. 

This simple pruning of memory pages based on the 
scheduling information, however, have a problem. For 
example, a foreground application is given CPU allocation to 
show its initial screen. Then the application waits for input 
commands by a user. During this time, the process for the 
application is not allocated CPU. At this moment, if pages 
within the process are deduplicated, the following progress of 
the application may update the contents of the pages so that 
the deduplicated pages will be broken their copy-on-write 
protection. In this regard, low-level scheduling information 
can cause unnecessary memory deduplication and overhead 
associated with the deduplication.  
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In mobile smart devices, more accurate high-level 
information can be used for the hints instead of the scheduling 
information. Recall that cached applications are not given 
CPU allocation for a long time in several to hundred seconds. 
Accordingly, the memory pages of a cached application are 
stable for a long time. By using this characteristic, when an 
application goes into the cached state, its memory pages 
become the target of memory deduplication. In other words, 
memory pages of a foreground application are ruled out of 
target of memory deduplication.  

In addition, once a cached application’s memory pages are 
scanned, no additional scanning is needed. The reason for this 
is that memory pages are not updated until the process is given 
CPU allocation. Accordingly, when some pages of them are 
deduplicated, those pages are stable.  

Service applications, which are given CPU allocation even 
when the applications are not visible to users, are outlier of the 
proposed time-domain pruning. For example, an MP3 player 
application periodically runs in background. Memory pages of 
such service applications, however, are unlikely to be 
deduplicated because these applications are live so that 
variables have different values to other cached applications.  

B. Pruning Pages in Space Domain 

While the pruning in time domain gets rid of unnecessary 
pages to be inspected in process-granularity, pruning in space 
domain excludes certain pages within each process. The pages 
that should be excluded are selected based on a priori 
knowledge as follows.  

 
1) Intra-Application Hint 

Recall that most duplicated pages are found on data section, 
such as a heap and library data sections. The main 
characteristic of these regions is that the regions already exist 
in the address space of the parent process. Memory regions 
that are created after spawning a new process unlikely 
generate memory duplication because the content stored in 
such region is totally private. Because merging pages occur 
across processes, totally private pages cannot find its 
counterpart for page merging. On the other hand, the memory 
regions which already exist in the parent process provide 
many memory deduplication chances because multiple 
application processes have the same regions and the contents 
within them are also similar to each other. 

In this regard, an assumption for pruning pages within a 
process is that pages shared with other processes are limited to 

some pages. In order to validate this assumption, the stability 
of sharing is measured. Stability of sharing indicates that 
when an application progresses, a fixed set of pages give 
memory savings by memory deduplication.  

To measure the stability, well-known mobile applications 
are used. For each application, after an application is started, 
(i) memory deduplication is conducted once and the pages 
(virtual pages) that are merged by deduplication are recorded 
(the first profile or P1) as depicted in Fig. 5. Then, to make 
changes on the state, (ii) the application is given several 
commands. After that, (iii) the shared virtual pages are 
recorded again (the second profile or P2). The (ii) and (iii) 
phases are repeated three times. From this measurement, each 
application gives four sets of deduplicated virtual pages each 
of which is denoted as P1, P2, P3, and P4.  

If the four sets of an application are the same (or similar) of 
each other, deduplicated virtual pages are stable within the 
lifetime of the application. For the similarity metric, Jaccard 
index [20] is used which provides a similarity value of two 
sets from (1). 

 
| |

( , )
| |

A B
J A B

A B





                                   (1) 

 
Fig. 6 shows the measured Jaccard indices of well-known 

applications. J(1,2) denotes P1, P2 are used to calculate Jaccard 
index. Except for the SNS application, other applications have 
0.9 - 1 of their Jaccard indices. Since the value is closed to 1, 
every set of virtual page profiles is similar to each other within 
an application.  

The result indicates that if the deduplication thread knows 
each application’s profile, a set of virtual pages that are likely 
to be deduplicated, the thread can inspect only virtual pages 
within the set. Accordingly, many virtual pages not belonging 
to the profile are skipped. 

When to build a profile of each application is also a 
challenging issue. In order to build a profile of an application, 
full scan of virtual pages of an application is necessary. Since 
mobile devices usually connected to power outlet for 
recharging, the full scanning can be performed at that moment 
without the power concern. By applying this approach, not 

Fig. 6. Stability of deduplicated pages within an application by calculating
similarity of deduplicated virtual pages over time. J(1, 2) denotes that the
first and second sets of deduplicated virtual pages are used to calculate
similarity by using Jaccard’s index. 

Fig. 5. Virtual page profile of each application. Each profile consists of
virtual pages which are merged by memory deduplication. 
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only making an initial profile but also updating a profile can 
be done. Applications having low stability, (SNS in Fig. 6) 
can take advantage of this update for having more accurate 
profile. 

 
2) Inter-Application Hint 

Maintaining profiles for each application, however, has 
high memory overhead. For example, when an application has 
3 GBs of its memory address space, it can have at most 
786,432 virtual pages. If a profile is represented as a bit for 
each virtual page, the profile needs 96 KBs of memory space. 
Accordingly, when the number of applications increases, the 
memory space for maintaining the profile for each application 
becomes significantly large.  

One of the ways to minimize this storage overhead is to 
maintain one profile (global profile) for all applications. 
Hence, the global profile is union of each application’s 
profile. To make this approach viable, virtual pages likely to 
be deduplicated should be similar across applications. In 
addition, the global profile should contain minimal false 
positive virtual pages. Therefore, a virtual page exists in the 
global profile, but the virtual page does not exist in an 
application’s profile.  

First, to know whether applications have similar footprint 
of shared virtual pages, the Jaccard indices of well-known 
applications are calculated as depicted in Table II. As shown 
in the table, actually, virtual pages merged by memory 
deduplication are different from each other since the Jaccard 
index values are in the range of 0.2 to 0.87. The average 
similarity across the applications is only 0.47. This means 
that each application’s profile is neither different from nor 
similar to each other. This, however, necessarily means that 
maintaining a global profile is inefficient. When a virtual 
page is set in the global profile, if the virtual page does not 
exist in an application’s address space, this virtual page is 
not a target of scanning.  

In this regard, more important metric for measuring the 
overhead when to maintain one global profile is the portion of 
false positive. Hence, the portion of virtual pages which are 
set in the global profile but are unlikely to be deduplicated in 

an application. This portion of app A can be calculated by (2), 
where GP is the global profile; MPA is a set of mergeable 
pages of app A; PA is a set of merged pages of app A. 

 
( )

( )
A A

A

GP MP P
f A
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 
                             (2) 

 
Fig. 7 shows the portion of per-application profile and false 

positive of using global profile to the mergeable (anonymous) 
pages for each application. Hence, the portion of per-
application profile is how much per-application profile skips 
unlikely deduplicated pages, and the portion of false positive 
is how many pages are unnecessarily scanned by using the 
global profile instead of using per-application profile. As 
shown in the figure, the portion of per-application profile is 
64% - 89% across the application. This result indicates that 
from 11% to 36% of memory pages are skipped during 
scanning. In addition, the portion of false positive is very low 
at 2% - 4% of the mergeable pages. The result indicates that 
using one global profile is reasonable since only a few pages 
are needlessly scanned.  

The global profile is also maintained as the per-application 
profile is maintained. When a smart device is plugged to 
power outlet, it performs full scan and sets a bit associated to 
a virtual page which is deduplicated. 

TABLE II 
SIMILARITY OF A SET OF DEDUPLICATED VIRTUAL PAGES ACROSS APPLICATIONS 

 Phone Calendar Market1 Movie News Browser Game1 Streaming Game2 SNS Gallery Map Market2 Alarm 

Phone  0.66 0.31 0.28 0.79 0.26 0.42 0.58 0.74 0.73 0.49 0.85 0.63 0.86 

Calendar 0.66  0.33 0.22 0.59 0.20 0.31 0.44 0.60 0.57 0.40 0.63 0.82 0.62 

Market1 0.31 0.33  0.21 0.31 0.22 0.33 0.39 0.27 0.34 0.31 0.30 0.33 0.31 

Movie 0.28 0.22 0.21  0.28 0.30 0.26 0.31 0.28 0.30 0.33 0.28 0.21 0.28 

News 0.79 0.59 0.31 0.28  0.27 0.43 0.61 0.77 0.74 0.49 0.86 0.62 0.87 

Browser 0.26 0.20 0.22 0.30 0.27  0.26 0.30 0.24 0.29 0.30 0.27 0.20 0.27 

Game1 0.42 0.31 0.33 0.26 0.43 0.26  0.47 0.38 0.45 0.39 0.42 0.31 0.42 

Streaming 0.58 0.44 0.39 0.31 0.61 0.30 0.47  0.55 0.62 0.52 0.60 0.44 0.60 

Game2 0.74 0.60 0.27 0.28 0.77 0.24 0.38 0.55  0.71 0.52 0.81 0.60 0.74 

SNS 0.73 0.57 0.34 0.30 0.74 0.29 0.45 0.62 0.71  0.56 0.79 0.53 0.75 

Gallery 0.49 0.40 0.31 0.33 0.49 0.30 0.39 0.52 0.52 0.56  0.50 0.38 0.50 

Map 0.85 0.63 0.30 0.28 0.86 0.27 0.42 0.60 0.81 0.79 0.50  0.61 0.86 

Market2 0.63 0.82 0.33 0.21 0.62 0.20 0.31 0.44 0.60 0.53 0.38 0.61  0.62 

Alarm 0.86 0.62 0.31 0.28 0.87 0.27 0.42 0.60 0.74 0.75 0.50 0.86 0.62  

Fig. 7. The portion of per-app profile and false positive in the global 
profile to mergeable pages within each application. 
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C. Scheduling Interference 

Excluding pages unlikely to be deduplicated from the 
scanning target does not necessarily mean that the overhead 
of memory deduplication is completely eliminated. The 
deduplication thread continuously works whenever some 
pages become the target of inspection. When the memory 
deduplication thread is active, it still contends for CPU with 
other applications. 

Many operating system kernels provide fair-based 
scheduling. Accordingly, when the deduplication thread is 
given the same priority to the other applications, the 
scheduling contention increases the runqueue wait time of 
applications. This results in the increased launch time of 
applications. In this regard, not only reducing the target of 
memory deduplication, but also careful scheduling of the 
memory deduplication thread is also important.  

One of ways of minimizing the scheduling contention is 
to degrade the scheduling class of the memory 
deduplication thread. For example, the thread is only 
allocated CPU when no runnable processes exist. This, 
however, may increase the complexity of existing operating 
system.  

An easier way of minimizing the scheduling contention is 
to give low priority to the deduplication thread. However, if 
the priority is too low, the progress is too slow that it can 
lose chances of memory deduplication [12]. This will result 
in killing more cached applications than that giving proper 
priority to the deduplication thread. In this regard, careful 
selection of the priority is important so that the priority 
satisfies both minimized scheduling contention and 
sufficient speed of memory deduplication.  

IV. EVALUATION 
This section shows the effect of the proposed memory 

deduplication scheme. First, the proposed scheme is evaluated 
for how well it reduces the computation cost while ensuring 
memory savings as much as that provided by original KSM. 
The next subsection provides how the proposed schemes 
improve user experience and mitigate memory pressure of the 
mobile smart devices. Finally, the last subsection gives the 
evaluation of the overheads caused by the memory 
deduplication. 

A. Experimental Environment 

The proposed scheme is implemented in an open source-
based mobile operating system. Since the mobile operating 
system uses Linux kernel, the proposed scheme is applied to 
KSM in Linux kernel. The evaluation is conducted on a well-
known commodity smartphone which is equipped with 1GB 
of main memory and 1.2 GHz dual-core CPU. 

All evaluations are performed by running a real world 
workload scenario. The real-world workload consists of 
twenty representative mobile applications. Those 
applications are classified into several groups such as social 
network service (SNS), game, market, streaming service, 
video player, web-browser, news, calendar, map, and some 
basic application suite for providing cellular phone 
functionalities. Each run of a workload invokes 200 
application launches in a fixed sequence [21]. The portion of 
each application is determined by the smartphone usage 
characteristics [22].  

The memory deduplication thread (ksmd) periodically scans 
100 pages and goes to sleep for 20 milliseconds by default. 
This configuration is used in all experiments.  

The proposed scheme is compared with vanilla KSM which 
uses a red-black tree index and hash-based KSM which uses a 
hash table instead of the tree. The case memory deduplication 
is disabled is denoted as no KSM. 

Fig. 8. Memory savings while a real-user workload is running. 
 

Fig. 9. Computation time for scanning one page in each scheme (time spent 
by memory deduplication thread / # of pages scanned). 
 

TABLE III 
CHARACTERISTICS OF THE MERGED PAGES 

Region 
Same virtual 

address 
Different virtual 

address 
Anonymous Pages  

(heap, bitmap, et al.) 
64.1% 24.5% 

Library data section 10.6% 0.8% 
 

 
Fig. 10. Normalized launch time and runqueue delay of the proposed 
scheme with varying the nice (priority) value of ksmd from 0 (high 
priority) to 19 (low priority). 
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The full scan is only performed at the beginning of a 
workload. Full scan of an application’s address space is also 
performed when the application is firstly launched during the 
workload running. Each full scan updates the global profile.  

Except for the evaluation in Section IV-C, the nice value 
(priority) of ksmd is assigned 15. This value is obtained from 
the parameter sensitivity test described in Section IV-C. 

B. Memory Savings and Computation Cost 

The primary objective of memory deduplication is securing 
free memory pages. Therefore, proposed memory 
deduplication schemes should secure free memory pages as 
many as that ensured by the vanilla KSM. Fig. 8 shows the 
amount of memory savings achieved while running the 
workload. As shown in the figure, the proposed scheme shows 
similar memory savings to vanilla KSM and hash-based KSM. 

Fig. 9 shows the cost of memory deduplication. Hence, the 
value shown in the figure is average time to scan a page for 
deduplication in each scheme. The cost of the proposed 
scheme is reduced to only 0.2% of vanilla KSM and 0.19% of 
hash-based KSM. Since the proposed scheme skips pages 
unlikely deduplicated, the average cost of scanning is greatly 
reduced.  

Table III shows the characteristics of the merged pages by 
memory deduplication. As shown in the table, the majority of 
merged pages belong to anonymous page regions such as heap 
and bitmap (metadata for free regions in the heap) regions. 
Data sections in libraries also show 11% of merged pages. In 
addition, 74% of merged pages have the same virtual address 
of each other.  

C. Scheduling Parameter 

As depicted in Section III-C, careful selection of scheduling 
parameter of the memory deduplication thread (ksmd) is 
important. This subsection tests the sensitivity of the 

scheduling parameter (i.e., priority). Fig. 10 shows launch 
time and runqueue delay of the ksmd thread. The values are 
normalized to the case that memory deduplication is disabled. 
The runqueue delay excludes the delay of ksmd. As shown in 
the figure, when the priority of ksmd is high (nice 0), the 
dealy of all applications is increased due to scheduling 
contention. This offsets the advantage of securing more 
memory by memory deduplication. When the priority is low 
(nice 19), the runqueue delay is low, but the launch time is 
increased. When the priority of ksmd is low, the progress of 
memory deduplication is too slow to timely secure additional 
memory. In this experiment, the best priority parameter (nice 
value) is 15. In that case, the proposed scheme shows the 
lowest launch time with low runqueue delay. 

D. Performance Benefit 

This section compares the performance benefit of the 
proposed scheme with vanilla KSM and hash-based KSM. Fig. 
11 shows normalized launch time of each scheme. The values 
are normalized to that of the no KSM case. As shown in the 
figure, the vanilla KSM shows the longest launch time of 
applications. Since vanilla KSM shows the highest cost of 
scanning, high CPU contention between applications and 
ksmd increases the launch time. Hash-based KSM shows 
faster launch time than the no KSM case by 3%. The proposed 
scheme shows the fastest launch time by 10% compared to the 
no KSM case. Because the proposed scheme has the lowest 
scanning cost, minimal scheduling contention happens. 

The main benefit of memory deduplication is the ability to 
cache more applications in memory. Fig. 12 shows the number 
of application kills (LMKs) while the workload is running. 
Fewer kills mean that more applications are cached in memory. 
As shown in the figure, the no KSM case shows the largest 
application kills. Accordingly, many applications are re-
launched from newly spawning processes. By using memory 
deduplication, fewer applications are killed. This indicates that 
additional memory contributed by memory deduplication is 
used for caching more applications. Although the proposed 
scheme shows slightly more application kills, it shows shorter 
launch time than other schemes. 

E. Overhead 

The final test of the proposed scheme is whether the 
memory deduplication consumes more power. Since power 
consumption of a smartphone is generally proportional to the 
CPU usage [3], the CPU utilization is measured while each 
workload is running and depicted in Fig. 13. As shown in the 

Fig. 11. Normalized launch time of applications 
 

Fig. 12. The number of process terminations (# of LMKs performed). 

Fig. 13. CPU utilization while the workload is running. 
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figure, the vanilla KSM shows the highest CPU utilization. 
Since this scheme has high scanning cost, the cost is directly 
reflected to the CPU utilization. The proposed scheme shows 
lower CPU utilization than the no KSM case. While the 
proposed scheme consumes more CPU, the benefits of 
reducing application launch time offsets the additional CPU 
consumption. Note that killing an application or launching an 
application by spawning a new process needs additional CPU 
time than switching cached application from background to 
foreground. 

V. CONCLUSION 

In spite of the benefits of memory deduplication, this 
technique is not adopted into smart mobile devices because of 
its high computation cost. Its massive computations result in 
quick battery drain so that the operational time of smart 
devices is shortened.  

In this paper, a cost effective memory deduplication scheme 
is proposed that scans memory pages selectively by using 
several heuristics coming from the specific features of mobile 
smart devices. With these heuristics, the proposed memory 
deduplication schemes can reduce the computation cost while 
it ensures almost the same memory savings that secured by 
previous memory deduplication schemes. By using the 
additional memory for caching more applications, the 
evaluation result shows that the proposed scheme improves 
application launch time without incurring additional CPU 
consumption.  
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