
276 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

Contributed Paper
Manuscript received 04/01/14
Current version published 06/23/14
Electronic version published 06/23/14. 0098 3063/14/$20.00 © 2014 IEEE

Selective Memory Deduplication for Cost
Efficiency in Mobile Smart Devices

Sung-hun Kim, Jinkyu Jeong, and Joonwon Lee

Abstract — Memory deduplication, which can remedy memory

scarcity in mobile systems, can hardly be used due to its high
computation cost. This paper proposes a computation efficient memory
deduplication scheme that avoids unnecessary computations for
memory deduplication. To make it efficient, the proposed scheme gets
rid of pages, which are unlikely to be deduplicated, from the target of
memory deduplication. This exclusion is performed in time-domain and
in space-domain by exploiting the characteristics of mobile
applications. The prototype implementation shows significant
computation cost reduction while providing the same memory savings
as in previous approaches. The saved memory is used for improving
application launch time as well.1

Index Terms — Smartphone, Memory deduplication, Energy
efficiency, Memory management

I. INTRODUCTION

In these days, mobile smart devices, such as smartphones and
smart tablets, are replacing other single purpose devices such as
MP3 player, portable media player (PMP), and sometimes laptop
PCs. Since a smart device is a general-purposed mobile device, it
can perform multiple functions which multiple single-purposed
devices have provided. A mobile smart device, however, has
restricted resources such as CPU, memory, and storage because
of its limited energy source (small-sized battery) and form-factor.
Thus, efficient use of the limited hardware resources is important
[1].

Although the computing power of a smart device is limited due
to the constrained hardware resources, customers want to have
better user experience. One of the important metrics that evaluate
user experience is application-launching time [2]. In order to
reduce the effective launch time of applications, many mobile
application frameworks support application caching [2], [7]. Once
an application is executed, it is cached in memory so that a user can
quickly reuse the application. Accordingly, the more applications a
system caches, the faster launch time it can provide. A drawback is
that since smartphones have limited main memory capacity, the
number of cacheable applications is also limited.

One of ways for increasing the number of cached applications
within a fixed physical memory size is to increase memory usage

1 This work was partly supported by the IT R&D program of MKE/KEIT.

[10041244, SmartTV 2.0 Software Platform] and by the Basic Science
Research Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education(2013R1A6A3A01023894).

Sung-hun Kim, Jinkyu Jeong, and Joonwon Lee are with the College of
Information and Communication Engineering, SungKyunKwan University,
Suwon, Rep. of Korea (e-mail: shkim@csl.skku.edu, jinkyu@skku.edu
joonwon@skku.edu).

density in a system. Memory deduplication is a software-based
approach to increasing memory density [4], [5]. By merging
identical pages within a system, this approach can secure more free
memory. The saved memory pages can be used for caching
additional applications. This approach, however, incurs significant
computation overhead to a system because inspecting identical
pages is highly CPU-intensive workload [6]. Although this CPU
overhead is not a significant problem in server systems because
those systems have unlimited power source, mobile systems cannot
adopt the memory deduplication approach due to power concern.

This paper proposes an efficient memory deduplication scheme
that reduces the CPU overhead accompanied by the memory
deduplication. To reduce the CPU overhead, this scheme only
scans memory pages that are likely to be deduplicated. The hints
about the likelihood are derived from the characteristics of mobile
application framework and the memory deduplication pattern in
mobile systems. Briefly, in time-domain, cached application’s
pages are only scanned once and never scanned again until the
application becomes active state because cached applications do
not change their memory states. In space-domain, only small part
of virtual pages of a process is the target of memory deduplication
because the other part of pages has very low probability of being
deduplicated. By filtering out such pages, the proposed scheme can
greatly reduce the memory inspection overhead while providing
mostly the same amount of memory savings a conventional
memory deduplication approach can provide.

The proposed scheme is implemented on a well-known mobile
smartphone and evaluated with real-world mobile applications. The
evaluation results show that the deduplication cost of the proposed
scheme is only 2% and 19% of the previous approaches. Due to the
minimized deduplication cost and secured additional memory, the
proposed scheme improves application launch time by 10%
compared to the case without memory deduplication.

The rest of this paper is organized as follows. The following
section describes the background associated with the proposed
scheme and reviews the related work. Section III explains the idea
of the proposed scheme and Section IV shows the implementation
issues. Section V evaluates the proposed scheme. The last section
concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Background
Many mobile application frameworks support various features

to improve user experience. Among them, several features, such
as application caching and fork-dlopen execution model, can

S.-h. Kim et al.: Selective Memory Deduplication for Cost Efficiency in Mobile Smart Devices 277

provide hints for reducing the memory deduplication overhead.
This subsection illustrates the background of those features and
hints associated with them.

1) Application Caching
Application caching is an approach to improving user

experience by caching applications when a user finishes
interaction with them. Since mobile devices are general-
purposed systems, these can run multiple applications. This
multi-programming environment, however, does not indicate
simultaneous execution of multiple applications. Because
mobile devices usually have a small screen, only one or a few
applications run at a time. Except for a foreground application,
other applications no longer interact with a user until those
become active again. Application caching is that instead of
killing processes hosting the finished applications, the
processes are kept live in memory as depicted in Fig. 1. When
a user wants to launch an application hosted by a cached
process, its launch time can be greatly reduced as compared to
spawning a new process. Fig. 2 shows the launch time
comparison between spawning a new process and reusing a
cached process. As shown in the figure, the application
caching shows 3.5 - 10 times faster launch time than spawning
a new process.

The other benefit of application caching is that when a user
visits a cached application again, the user can spontaneously
resume the interaction with the application. Because a cached
application keep the last state a user have interacted (e.g., the
last stage played in a game), a user do not need to input
additional command to make the application move to the last
state. This benefit also greatly reduces time to resume an
application by avoiding the additional steps to recover the last
state.

The drawback of application caching is memory space
cost for caching each application process. Table I shows the
memory cost for caching well known mobile applications.
The memory cost varies across applications and the average
is 20 MBs. Since the application caching can boost the
launch time of applications in a system, the more
applications a system caches, the better user experience the
system can provide. A mobile smart device, however, has
limited memory capacity due to many factors, such as unit
cost, power consumption and small form factor. Accordingly,
the number of applications a system can cache is limited.
When a system has memory shortage, an operating system
reclaims memory pages of a cached application by killing
the application (the Killed arrow in Fig. 1). This memory

reclamation scheme in process granularity is denoted as low
memory killer (LMK) [3], [7].

The application caching is the motivation of the need for
securing more memory by using memory deduplication. The
additional memory can be used for caching more application
so that the possibility to launch an application from the cached
state can increase. Therefore, the user experience of a mobile
smart device will be improved.

The hint the application caching can provide to memory
deduplication is that the data stored in cached applications are
stable. Since a cached application no longer interacts with
users until it goes into foreground, the application does not
need to be allocated CPU. Accordingly, the cached application
never changes the content of the pages belonging to the
applications. Since memory deduplication is based on the
content of each page, this hint can rule out the target pages to
be inspected for memory deduplication and can also determine
the frequency of scanning of those stable pages. The details
are explained in Section III-A.

2) Fork-dlopen Execution Model
Many mobile application frameworks adopt fork-dlopen

execution model rather than fork-exec execution model. The
fork-exec model is traditionally used application execution
model in Unix-like systems. In this model, a parent process
forks a child process and calls an exec-like system call to
replace the address space of the child process into a new one
as depicted in Fig. 3. Loading an executable binary and its
associated libraries occur during this phase. The drawback of
this model is that when an application uses a lot of libraries,
loading the libraries slows down the launch time of an
application. Since mobile applications are highly dependent to
many application framework libraries [18], their launch time
can be slowed down.

Fork-dlopen execution model is better than the fork-exec
model in this case. Using this model, a parent process already
loads commonly used application libraries in its address space.
When to run a new application, it forks a child process by

Fig. 2. Launch time of applications in three cases: spawning a new
process, resuming a cached application, and resuming a cached one whose
memory pages are deduplicated so copy-on-write-protected.

TABLE I

MEMORY COSTS FOR CACHING APPLICATIONS

Application Memory Cost Application Memory Cost
Phone 14.3 MB SNS2 18.6 MB
SMS 5.7 MB Map 32.4 MB
SNS1 24.5 MB Browser 65.1 MB
News 8.0 MB Email 6.7 MB

Market1 8.8 MB Average 20.5 MB

Fig. 1. State diagram of mobile applications

278 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

invoking the fork system call. Then, it only loads an
executable of the desired application and calls the main
function of the application as shown in Fig. 3. Accordingly,
the number of binary loads is greatly reduced compared to the
fork-exec model [19]. Many mobile application frameworks
adopt this model due to the benefit of reducing application
launch time.

The main characteristic of this fork-dlopen execution model is
that applications have mostly the same address space layout as
illustrated in Fig. 4. Since many commonly used libraries and
resource files are already linked in the parent’s address space,
applications forked from the parent still have the same files
linked at the same addresses. In addition, identical pages are
usually found within the forked memory regions. By using this
hint, the proposed scheme can get rid of pages that never provide
sharing chances. The details are explained in Section III-B.

3) Memory Deduplication

Memory deduplication (or content-based page sharing) is a
technique to secure free memory by merging identical pages.
When there are multiple pages having the same content,
multiple contexts (e.g., processes or virtual machines) can
share one page so that the rest of the pages can be saved. To
avoid data inconsistency from any modification to the shared
page, page table entries to the shared page are copy-on-write
protected. Any context performing updates to the shared page
causes copy-on-write break and the context have a private
copy of the shared page.

Since memory deduplication is based on the contents of
pages, inspecting memory pages in a system is essential.
Usually, a thread is designated to inspect machine memory
and find out identical pages. When identical pages are found,
the thread conducts page merging. Since physical memory
management is the role of operating system kernel, the thread
runs at kernel-level.

From the perspective of applications, the main cost of
memory deduplication is copy-on-write protection. When
merged (shared) pages are read-only accessed, it does not
incur any overhead accessing the merged pages. When writes
occur on the merged pages, however, the writes causes page
fault and memory copies to perform copy-on-write.

In mobile systems, this copy-on-write overhead is not
significant in practice. Fig. 1 also includes the launch time of
applications when each application’s memory pages are
deduplicated so copy-on-write protected (Cached+Deduped).
Since memory pages are copy-on-write protected, launching
the application may cause several copy-on-writes. This
overhead, however, does not overrun the benefit of
application caching. In the figure, the launch time of
applications whose memory pages are deduplicated is still
faster than spawning a new process.

The main overhead of memory deduplication from the
perspective of system is scanning the page frames to find out
identical pages. To find out same pages, every combination of
pages should be compared in byte-by-byte granularity. This
overhead is non-trivial. This overhead can be serious problem
in battery-powered mobile devices. Accordingly, even if a
mobile system has many identical pages, memory
deduplication cannot be easily adopted without resolving the
high scanning overhead.

4) Memory Duplication in Smart Devices
Basically, memory deduplication is based on the

assumption that a system has many duplicated (identical)
pages. This assumption is mostly true in virtualized
environment. Indeed, memory deduplication is actively used
in virtualized environments [4], [5], [8], [9]. Since a physical
machine hosts multiple virtual machines (VMs) and the
software as well as the data used in VMs can be similar [10].
Accordingly, by merging those identical pages, the physical
system can obtain additional free pages.

Whether many identical pages exist in mobile smart devices
is an important issue because if no memory duplication occurs,

Fig. 4. Similar address space of applications by using fork-dlopen
execution model

Fig. 3. Traditional Unix/Linux execution model (fork()-exec()) vs. Android
execution model (fork()-dlopen())

S.-h. Kim et al.: Selective Memory Deduplication for Cost Efficiency in Mobile Smart Devices 279

memory deduplication is useless. A mobile device usually
runs not multiple operating systems but a single operating
system. Within a single operating system, memory pages are
unlikely duplicated because operating system tries to
minimize duplication of memory pages. For example, when
multiple processes read the same file, an operating system
maintains a single copy of the file within its page cache and
the content is copied to each process. When a process forks, a
child process shares the pages of its parent process albeit in
copy-on-write protection.

Memory duplication in mobile systems actually occurs due to
the fork-dlopen execution model. Since mobile applications are
highly application-framework dependent, they share a lot of
shared libraries. It causes each application has similar address
space layout as shown in Fig. 4. It means that when a data
structure consisting of multiple pointers is stored in a process’s
heap, the contents of the data structure are the same across
multiple processes [11]. In addition, cached applications are at
the same state waiting for the event to make them to be in
foreground. Accordingly, the states of variables are mostly the
same across cached applications. For example, a lock variable is
frequently locked or unlocked when an application is in
foreground. But, the lock variable is unlocked while the
application is in cached state. For these reasons, a mobile system
has many identical pages and memory deduplication can be
applied to mobile systems to secure more memory [6].

B. Related Work

Waldspurger introduced content-based page sharing in a
commodity virtual machine monitor [4]. It finds out identical
pages and merges them based on the contents of pages. It also
provides a knob to throttle the ratio at which a page scanning
thread works. By adjusting the scanning speed (e.g., 100
pages per 100 ms), the overhead can be reduced. But, when
the inspection thread works slowly, it cannot quickly gather
same pages [12]. This scheme also uses a hash table to reduce
the number of memory comparisons. When two pages have
the same hash value, then it compares both pages in byte
granularity.

 Kernel same page merging (KSM) is memory
deduplication technique used in Linux kernel [5]. It not only
targets kernel virtual machines (KVMs) but also processes
running on the host Linux kernel. This scheme uses a red-
block tree to reduce the number of memory comparisons.

To avoid the scanning of pages, several studies targets
memory deduplication on cache pages of storage [8], [13],
[14]. When multiple VMs read pages having the same block
number, those pages are deduplicated because those have the
same content. These approaches, however, are limited to
cache pages while most of the sharing chances are on heap or
data sections within a process in mobile systems.

To reduce scanning overhead, Sharma et al [16] proposed
scanning dirtied pages only scheme. When clean pages are
scanned once, no additional scanning is required.

Chen et al [17] exploits page access characteristics to
reduce the number of memory comparisons during memory

deduplication. Pages having similar access patterns have high
likelihood of deduplication. This scheme, however, requires
hardware modification that generates the foot print of access
pattern of a page.

Memory deduplication in mobile is first mentioned in Cells
[15]. Because it enables multiple mobile systems to be hosted
on a single smartphone device, the system can experience high
memory shortage. Memory deduplication is applied to
overcome the memory shortage. No attempts to minimize the
overhead related to the memory deduplications were made.

III. SELECTIVE MEMORY DEDUPLICATION

Although a mobile smart device has many identical pages
which can be deduplicated for saving memory, CPU costs
caused by memory deduplication should be resolved.
Otherwise, excessive use of CPU will drain battery quickly.

The main idea of the proposed efficient memory
deduplication scheme is to prune the target pages to be
inspected for memory deduplication. By getting rid of unlikely
to be deduplicated pages, the deduplication thread does not
need to consume unnecessary CPU cycles. By carefully
selecting the pages not to be inspected, the amount of memory
savings provided by the memory deduplication can be the
same as that of an uncontrolled scheme.

The hints are arisen from the specific characteristics of
mobile applications. The first subsection gives the idea of
pruning pages in each process based on the scheduling
information. The next subsection provides how the proposed
scheme selects likely to be deduplicated pages within an
application. The last subsection gives implementation issues
related to the proposed ideas.

A. Pruning Pages in Time Domain

Since memory deduplication is based on the contents of
pages, scheduling information can give a great hint to whether
to inspect a certain memory pages or not. Every content
update on a process’s memory pages occurs by store
instructions on CPU. Accordingly, when a process is not
allocated CPU, it is guaranteed that the memory pages
belonging to the process are not updated. From this point,
when pages in a process are inspected for memory
deduplication, until the process is scheduled on CPU, no
additional inspection is needed [16].

This simple pruning of memory pages based on the
scheduling information, however, have a problem. For
example, a foreground application is given CPU allocation to
show its initial screen. Then the application waits for input
commands by a user. During this time, the process for the
application is not allocated CPU. At this moment, if pages
within the process are deduplicated, the following progress of
the application may update the contents of the pages so that
the deduplicated pages will be broken their copy-on-write
protection. In this regard, low-level scheduling information
can cause unnecessary memory deduplication and overhead
associated with the deduplication.

280 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

In mobile smart devices, more accurate high-level
information can be used for the hints instead of the scheduling
information. Recall that cached applications are not given
CPU allocation for a long time in several to hundred seconds.
Accordingly, the memory pages of a cached application are
stable for a long time. By using this characteristic, when an
application goes into the cached state, its memory pages
become the target of memory deduplication. In other words,
memory pages of a foreground application are ruled out of
target of memory deduplication.

In addition, once a cached application’s memory pages are
scanned, no additional scanning is needed. The reason for this
is that memory pages are not updated until the process is given
CPU allocation. Accordingly, when some pages of them are
deduplicated, those pages are stable.

Service applications, which are given CPU allocation even
when the applications are not visible to users, are outlier of the
proposed time-domain pruning. For example, an MP3 player
application periodically runs in background. Memory pages of
such service applications, however, are unlikely to be
deduplicated because these applications are live so that
variables have different values to other cached applications.

B. Pruning Pages in Space Domain

While the pruning in time domain gets rid of unnecessary
pages to be inspected in process-granularity, pruning in space
domain excludes certain pages within each process. The pages
that should be excluded are selected based on a priori
knowledge as follows.

1) Intra-Application Hint

Recall that most duplicated pages are found on data section,
such as a heap and library data sections. The main
characteristic of these regions is that the regions already exist
in the address space of the parent process. Memory regions
that are created after spawning a new process unlikely
generate memory duplication because the content stored in
such region is totally private. Because merging pages occur
across processes, totally private pages cannot find its
counterpart for page merging. On the other hand, the memory
regions which already exist in the parent process provide
many memory deduplication chances because multiple
application processes have the same regions and the contents
within them are also similar to each other.

In this regard, an assumption for pruning pages within a
process is that pages shared with other processes are limited to

some pages. In order to validate this assumption, the stability
of sharing is measured. Stability of sharing indicates that
when an application progresses, a fixed set of pages give
memory savings by memory deduplication.

To measure the stability, well-known mobile applications
are used. For each application, after an application is started,
(i) memory deduplication is conducted once and the pages
(virtual pages) that are merged by deduplication are recorded
(the first profile or P1) as depicted in Fig. 5. Then, to make
changes on the state, (ii) the application is given several
commands. After that, (iii) the shared virtual pages are
recorded again (the second profile or P2). The (ii) and (iii)
phases are repeated three times. From this measurement, each
application gives four sets of deduplicated virtual pages each
of which is denoted as P1, P2, P3, and P4.

If the four sets of an application are the same (or similar) of
each other, deduplicated virtual pages are stable within the
lifetime of the application. For the similarity metric, Jaccard
index [20] is used which provides a similarity value of two
sets from (1).

| |

(,)
| |

A B
J A B

A B





 (1)

Fig. 6 shows the measured Jaccard indices of well-known

applications. J(1,2) denotes P1, P2 are used to calculate Jaccard
index. Except for the SNS application, other applications have
0.9 - 1 of their Jaccard indices. Since the value is closed to 1,
every set of virtual page profiles is similar to each other within
an application.

The result indicates that if the deduplication thread knows
each application’s profile, a set of virtual pages that are likely
to be deduplicated, the thread can inspect only virtual pages
within the set. Accordingly, many virtual pages not belonging
to the profile are skipped.

When to build a profile of each application is also a
challenging issue. In order to build a profile of an application,
full scan of virtual pages of an application is necessary. Since
mobile devices usually connected to power outlet for
recharging, the full scanning can be performed at that moment
without the power concern. By applying this approach, not

Fig. 6. Stability of deduplicated pages within an application by calculating
similarity of deduplicated virtual pages over time. J(1, 2) denotes that the
first and second sets of deduplicated virtual pages are used to calculate
similarity by using Jaccard’s index.

Fig. 5. Virtual page profile of each application. Each profile consists of
virtual pages which are merged by memory deduplication.

S.-h. Kim et al.: Selective Memory Deduplication for Cost Efficiency in Mobile Smart Devices 281

only making an initial profile but also updating a profile can
be done. Applications having low stability, (SNS in Fig. 6)
can take advantage of this update for having more accurate
profile.

2) Inter-Application Hint

Maintaining profiles for each application, however, has
high memory overhead. For example, when an application has
3 GBs of its memory address space, it can have at most
786,432 virtual pages. If a profile is represented as a bit for
each virtual page, the profile needs 96 KBs of memory space.
Accordingly, when the number of applications increases, the
memory space for maintaining the profile for each application
becomes significantly large.

One of the ways to minimize this storage overhead is to
maintain one profile (global profile) for all applications.
Hence, the global profile is union of each application’s
profile. To make this approach viable, virtual pages likely to
be deduplicated should be similar across applications. In
addition, the global profile should contain minimal false
positive virtual pages. Therefore, a virtual page exists in the
global profile, but the virtual page does not exist in an
application’s profile.

First, to know whether applications have similar footprint
of shared virtual pages, the Jaccard indices of well-known
applications are calculated as depicted in Table II. As shown
in the table, actually, virtual pages merged by memory
deduplication are different from each other since the Jaccard
index values are in the range of 0.2 to 0.87. The average
similarity across the applications is only 0.47. This means
that each application’s profile is neither different from nor
similar to each other. This, however, necessarily means that
maintaining a global profile is inefficient. When a virtual
page is set in the global profile, if the virtual page does not
exist in an application’s address space, this virtual page is
not a target of scanning.

In this regard, more important metric for measuring the
overhead when to maintain one global profile is the portion of
false positive. Hence, the portion of virtual pages which are
set in the global profile but are unlikely to be deduplicated in

an application. This portion of app A can be calculated by (2),
where GP is the global profile; MPA is a set of mergeable
pages of app A; PA is a set of merged pages of app A.

()

()
A A

A

GP MP P
f A

MP

 
 (2)

Fig. 7 shows the portion of per-application profile and false

positive of using global profile to the mergeable (anonymous)
pages for each application. Hence, the portion of per-
application profile is how much per-application profile skips
unlikely deduplicated pages, and the portion of false positive
is how many pages are unnecessarily scanned by using the
global profile instead of using per-application profile. As
shown in the figure, the portion of per-application profile is
64% - 89% across the application. This result indicates that
from 11% to 36% of memory pages are skipped during
scanning. In addition, the portion of false positive is very low
at 2% - 4% of the mergeable pages. The result indicates that
using one global profile is reasonable since only a few pages
are needlessly scanned.

The global profile is also maintained as the per-application
profile is maintained. When a smart device is plugged to
power outlet, it performs full scan and sets a bit associated to
a virtual page which is deduplicated.

TABLE II
SIMILARITY OF A SET OF DEDUPLICATED VIRTUAL PAGES ACROSS APPLICATIONS

 Phone Calendar Market1 Movie News Browser Game1 Streaming Game2 SNS Gallery Map Market2 Alarm

Phone 0.66 0.31 0.28 0.79 0.26 0.42 0.58 0.74 0.73 0.49 0.85 0.63 0.86

Calendar 0.66 0.33 0.22 0.59 0.20 0.31 0.44 0.60 0.57 0.40 0.63 0.82 0.62

Market1 0.31 0.33 0.21 0.31 0.22 0.33 0.39 0.27 0.34 0.31 0.30 0.33 0.31

Movie 0.28 0.22 0.21 0.28 0.30 0.26 0.31 0.28 0.30 0.33 0.28 0.21 0.28

News 0.79 0.59 0.31 0.28 0.27 0.43 0.61 0.77 0.74 0.49 0.86 0.62 0.87

Browser 0.26 0.20 0.22 0.30 0.27 0.26 0.30 0.24 0.29 0.30 0.27 0.20 0.27

Game1 0.42 0.31 0.33 0.26 0.43 0.26 0.47 0.38 0.45 0.39 0.42 0.31 0.42

Streaming 0.58 0.44 0.39 0.31 0.61 0.30 0.47 0.55 0.62 0.52 0.60 0.44 0.60

Game2 0.74 0.60 0.27 0.28 0.77 0.24 0.38 0.55 0.71 0.52 0.81 0.60 0.74

SNS 0.73 0.57 0.34 0.30 0.74 0.29 0.45 0.62 0.71 0.56 0.79 0.53 0.75

Gallery 0.49 0.40 0.31 0.33 0.49 0.30 0.39 0.52 0.52 0.56 0.50 0.38 0.50

Map 0.85 0.63 0.30 0.28 0.86 0.27 0.42 0.60 0.81 0.79 0.50 0.61 0.86

Market2 0.63 0.82 0.33 0.21 0.62 0.20 0.31 0.44 0.60 0.53 0.38 0.61 0.62

Alarm 0.86 0.62 0.31 0.28 0.87 0.27 0.42 0.60 0.74 0.75 0.50 0.86 0.62

Fig. 7. The portion of per-app profile and false positive in the global
profile to mergeable pages within each application.

282 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

C. Scheduling Interference

Excluding pages unlikely to be deduplicated from the
scanning target does not necessarily mean that the overhead
of memory deduplication is completely eliminated. The
deduplication thread continuously works whenever some
pages become the target of inspection. When the memory
deduplication thread is active, it still contends for CPU with
other applications.

Many operating system kernels provide fair-based
scheduling. Accordingly, when the deduplication thread is
given the same priority to the other applications, the
scheduling contention increases the runqueue wait time of
applications. This results in the increased launch time of
applications. In this regard, not only reducing the target of
memory deduplication, but also careful scheduling of the
memory deduplication thread is also important.

One of ways of minimizing the scheduling contention is
to degrade the scheduling class of the memory
deduplication thread. For example, the thread is only
allocated CPU when no runnable processes exist. This,
however, may increase the complexity of existing operating
system.

An easier way of minimizing the scheduling contention is
to give low priority to the deduplication thread. However, if
the priority is too low, the progress is too slow that it can
lose chances of memory deduplication [12]. This will result
in killing more cached applications than that giving proper
priority to the deduplication thread. In this regard, careful
selection of the priority is important so that the priority
satisfies both minimized scheduling contention and
sufficient speed of memory deduplication.

IV. EVALUATION
This section shows the effect of the proposed memory

deduplication scheme. First, the proposed scheme is evaluated
for how well it reduces the computation cost while ensuring
memory savings as much as that provided by original KSM.
The next subsection provides how the proposed schemes
improve user experience and mitigate memory pressure of the
mobile smart devices. Finally, the last subsection gives the
evaluation of the overheads caused by the memory
deduplication.

A. Experimental Environment

The proposed scheme is implemented in an open source-
based mobile operating system. Since the mobile operating
system uses Linux kernel, the proposed scheme is applied to
KSM in Linux kernel. The evaluation is conducted on a well-
known commodity smartphone which is equipped with 1GB
of main memory and 1.2 GHz dual-core CPU.

All evaluations are performed by running a real world
workload scenario. The real-world workload consists of
twenty representative mobile applications. Those
applications are classified into several groups such as social
network service (SNS), game, market, streaming service,
video player, web-browser, news, calendar, map, and some
basic application suite for providing cellular phone
functionalities. Each run of a workload invokes 200
application launches in a fixed sequence [21]. The portion of
each application is determined by the smartphone usage
characteristics [22].

The memory deduplication thread (ksmd) periodically scans
100 pages and goes to sleep for 20 milliseconds by default.
This configuration is used in all experiments.

The proposed scheme is compared with vanilla KSM which
uses a red-black tree index and hash-based KSM which uses a
hash table instead of the tree. The case memory deduplication
is disabled is denoted as no KSM.

Fig. 8. Memory savings while a real-user workload is running.

Fig. 9. Computation time for scanning one page in each scheme (time spent
by memory deduplication thread / # of pages scanned).

TABLE III
CHARACTERISTICS OF THE MERGED PAGES

Region
Same virtual

address
Different virtual

address
Anonymous Pages

(heap, bitmap, et al.)
64.1% 24.5%

Library data section 10.6% 0.8%

Fig. 10. Normalized launch time and runqueue delay of the proposed
scheme with varying the nice (priority) value of ksmd from 0 (high
priority) to 19 (low priority).

S.-h. Kim et al.: Selective Memory Deduplication for Cost Efficiency in Mobile Smart Devices 283

The full scan is only performed at the beginning of a
workload. Full scan of an application’s address space is also
performed when the application is firstly launched during the
workload running. Each full scan updates the global profile.

Except for the evaluation in Section IV-C, the nice value
(priority) of ksmd is assigned 15. This value is obtained from
the parameter sensitivity test described in Section IV-C.

B. Memory Savings and Computation Cost

The primary objective of memory deduplication is securing
free memory pages. Therefore, proposed memory
deduplication schemes should secure free memory pages as
many as that ensured by the vanilla KSM. Fig. 8 shows the
amount of memory savings achieved while running the
workload. As shown in the figure, the proposed scheme shows
similar memory savings to vanilla KSM and hash-based KSM.

Fig. 9 shows the cost of memory deduplication. Hence, the
value shown in the figure is average time to scan a page for
deduplication in each scheme. The cost of the proposed
scheme is reduced to only 0.2% of vanilla KSM and 0.19% of
hash-based KSM. Since the proposed scheme skips pages
unlikely deduplicated, the average cost of scanning is greatly
reduced.

Table III shows the characteristics of the merged pages by
memory deduplication. As shown in the table, the majority of
merged pages belong to anonymous page regions such as heap
and bitmap (metadata for free regions in the heap) regions.
Data sections in libraries also show 11% of merged pages. In
addition, 74% of merged pages have the same virtual address
of each other.

C. Scheduling Parameter

As depicted in Section III-C, careful selection of scheduling
parameter of the memory deduplication thread (ksmd) is
important. This subsection tests the sensitivity of the

scheduling parameter (i.e., priority). Fig. 10 shows launch
time and runqueue delay of the ksmd thread. The values are
normalized to the case that memory deduplication is disabled.
The runqueue delay excludes the delay of ksmd. As shown in
the figure, when the priority of ksmd is high (nice 0), the
dealy of all applications is increased due to scheduling
contention. This offsets the advantage of securing more
memory by memory deduplication. When the priority is low
(nice 19), the runqueue delay is low, but the launch time is
increased. When the priority of ksmd is low, the progress of
memory deduplication is too slow to timely secure additional
memory. In this experiment, the best priority parameter (nice
value) is 15. In that case, the proposed scheme shows the
lowest launch time with low runqueue delay.

D. Performance Benefit

This section compares the performance benefit of the
proposed scheme with vanilla KSM and hash-based KSM. Fig.
11 shows normalized launch time of each scheme. The values
are normalized to that of the no KSM case. As shown in the
figure, the vanilla KSM shows the longest launch time of
applications. Since vanilla KSM shows the highest cost of
scanning, high CPU contention between applications and
ksmd increases the launch time. Hash-based KSM shows
faster launch time than the no KSM case by 3%. The proposed
scheme shows the fastest launch time by 10% compared to the
no KSM case. Because the proposed scheme has the lowest
scanning cost, minimal scheduling contention happens.

The main benefit of memory deduplication is the ability to
cache more applications in memory. Fig. 12 shows the number
of application kills (LMKs) while the workload is running.
Fewer kills mean that more applications are cached in memory.
As shown in the figure, the no KSM case shows the largest
application kills. Accordingly, many applications are re-
launched from newly spawning processes. By using memory
deduplication, fewer applications are killed. This indicates that
additional memory contributed by memory deduplication is
used for caching more applications. Although the proposed
scheme shows slightly more application kills, it shows shorter
launch time than other schemes.

E. Overhead

The final test of the proposed scheme is whether the
memory deduplication consumes more power. Since power
consumption of a smartphone is generally proportional to the
CPU usage [3], the CPU utilization is measured while each
workload is running and depicted in Fig. 13. As shown in the

Fig. 11. Normalized launch time of applications

Fig. 12. The number of process terminations (# of LMKs performed).

Fig. 13. CPU utilization while the workload is running.

284 IEEE Transactions on Consumer Electronics, Vol. 60, No. 2, May 2014

figure, the vanilla KSM shows the highest CPU utilization.
Since this scheme has high scanning cost, the cost is directly
reflected to the CPU utilization. The proposed scheme shows
lower CPU utilization than the no KSM case. While the
proposed scheme consumes more CPU, the benefits of
reducing application launch time offsets the additional CPU
consumption. Note that killing an application or launching an
application by spawning a new process needs additional CPU
time than switching cached application from background to
foreground.

V. CONCLUSION

In spite of the benefits of memory deduplication, this
technique is not adopted into smart mobile devices because of
its high computation cost. Its massive computations result in
quick battery drain so that the operational time of smart
devices is shortened.

In this paper, a cost effective memory deduplication scheme
is proposed that scans memory pages selectively by using
several heuristics coming from the specific features of mobile
smart devices. With these heuristics, the proposed memory
deduplication schemes can reduce the computation cost while
it ensures almost the same memory savings that secured by
previous memory deduplication schemes. By using the
additional memory for caching more applications, the
evaluation result shows that the proposed scheme improves
application launch time without incurring additional CPU
consumption.

REFERENCES
[1] J. Jeong, H. Kim, J. Hwang, J. Lee, and S. Maeng, “Rigorous rental

memory management for embedded systems,” ACM Trans. Embed.
Comput. Syst., vol. 12, issue 1, pp. 43:1-43:21, Mar. 2013.

[2] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app launching
for mobile devices using predictive user context,” in Proc. Int. Conf.
Mobile Systems, Applications, and Services, pp. 113-126, 2012.

[3] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope:
application energy metering framework for android smartphones Using
Kernel Activity Monitoring,” in Proc. USENIX Annu. Technical Conf.,
2012.

[4] C. A. Waldspurger, “Memory Resource Management in VMware ESX
Server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, Dec.
2002.

[5] A. Arcangeli, I. Eidus, and C. Wright, "Increasing memory density by
using KSM," in Proc. of the Ottawa Linux Symp., pp. 19-28, 2009.

[6] S. Kim, J. Jeong, and J. Lee, “Efficient memory deduplication for mobile
smart devices,” in Proc. IEEE Int. Conf. Consumer Electronics, pp. 25-
26, Jan. 2014.

[7] G. Lim, C. Min, Y. Eom, “Virtual memory partitioning for enhancing
application performance in mobile platforms,” IEEE Trans. Consumer
Electron., vol. 59, no. 4, pp. 786-794, Nov. 2013.

[8] G. Miłós, D. G. Murray, S. Hand, and M, A. Fetterman, “Satori:
enlightened page sharing,” in Proc. USENIX Annu. Technical Conf.,
2009.

[9] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese, G.
M. Voelker, and A. Vahdat, “Difference engine: harnessing memory
redundancy in virtual machines,” Commun. ACM, vol. 53, no. 10, pp.
85-93, Oct. 2010.

[10] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner, “Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers,” SIGOPS Oper. Syst. Rev., vol. 43,
no. 3, pp. 27-37, July 2009.

[11] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman, “An empirical study
of memory sharing in virtual machines,” in Proc. USENIX Annu.
Technical Conf., 2012.

[12] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and F. Bellosa,
“XLH: more effective memory deduplication scanners through cross-
layer hints,” in Proc. USENIX Annu. Technical Conf., pp. 279-290, 2013.

[13] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: running
commodity operating systems on scalable multiprocessors,” ACM Trans.
Comput. Syst., vol. 15, no. 4, pp. 412-447, Nov. 1997.

[14] K. Miller, F. Franz, T. Groeninger, M. Rittinghaus, M. Hillenbrand, and
F. Bellosa, “KSM++: using I/O-based hints to make memory-
deduplication scanner more efficient,” In Proc. Workshop on Runtime
Environments, Systems, Layering and Virtualized Environments, 2012.

[15] J. Andrus, C. Dall, A. Van't Hof, O. Laadan, and J. Nieh, “Cells: a
virtual mobile smartphone architecture,” in Proc. ACM Symp. Operating
Systems Principles, pp. 173-187, 2011.

[16] P. Sharma, and P Kulkarni, “Singleton: system-wide page deduplication
in virtual environments,” in Proc. the 21st Int. Symp. on High-
Performance Parallel and Distributed Computing, pp. 15-26, 2012.

[17] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao, “CMD:
classification-based memory deduplication through page access
characteristics,” in Proc. ACM SIGPLAN/SIGOPS Int. Conf. Virtual
Execution Environments, pp. 65-76, 2014.

[18] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi, C.
Emmons, and N. Paver, “Full-system analysis and characterization of
interactive smartphone applications,” in Proc. IEEE Int. Symp. Workload
Characterization, pp. 81-90, 2011.

[19] C. Jung, D. Woo, K. Kim, and S. Lim, “Performance characterization of
prelinking and preloading for embedded systems,” in Proc. ACM &
IEEE International Conference on Embedded Software, pp. 213-220,
2007.

[20] P. Tan, M. Steinbach, V. Kuma, Introduction to Data Mining, 1st ed.,
Addision-Wesley, 2005.

[21] J. Jeong, H. Kim, J. Hwang, J. Lee, and S. Maeng, "DaaC: device-
reserved memory as an eviction-based file cache," in Proc. 21th Int.
Conf. Compilers Architecture and Synthesis for Embedded Systems,
Tampere, Finland, pp. 191-200, 2012.

[22] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin, “Diversity in smartphone usage,” in Proc. Int. Conf.
Mobile Systems, Applications, and Services, pp. 179-194, 2010.

BIOGRAPHIES

Sung-hun Kim received his B.S. degree in Computer
Engineering from Sunghyunkwan University (SKKU) in
2012 and M.S. degree in Information Technology
Convergence Department from SKKU in 2014. He is
currently a Ph.D. candidate in the IT Convergence
Department in SKKU. His current research interests
include operating systems, multi-core systems, storage
systems and mobile systems.

Jinkyu Jeong received his B.S. degree in Computer
Science from Yonsei University and Ph.D. degree from
Korea Advanced Institute of Science and Technology
(KAIST) in 2013. He is currently an assistant professor in
the department of Semiconductor Systems Engineering at
Sungkyunkwan University. His research interests include
real-time systems, operating systems, virtualization, and
embedded systems.

 Joonwon Lee received his B.S. degree in Computer
Science from Seoul National University in 1983 and M.S.
and Ph.D. degrees from the Georgia Institute of
Technology in 1990 and 1991, respectively. He is
currently a professor in Sungkyunkwan University
(SKKU). Before joining SKKU, he was a professor at the
Korea Advanced Institute of Science and Technology
from 1992 to 2008. His current research interests include

low power embedded systems, system software, and virtual machines.

