
Contributed Paper
Manuscript received 12/22/13
Current version published 03/20/14
Electronic version published 03/20/14. 0098 3063/14/$20.00 © 2014 IEEE

A Battery Lifetime Guarantee Scheme
for Selective Applications in Smart Mobile Devices

Jungwook Cho, Youngjoo Woo, Suntae Kim, and Euiseong Seo

Abstract — Unpredictable battery lifetime arising from

multitasking can have a significant negative effect on
availability for mobile devices. In practice, some applications
are prioritized and required to remain in operation for certain
duration. This paper suggests a battery lifetime guaranteeing
scheme for prioritized applications in multitasking mobile
systems. The proposed approach profiles and analyzes the
battery usage pattern of each task dynamically, and preserves
the energy budget for operation of prioritized tasks for a
guaranteed time. In addition, this paper proposes an energy-
constrained scheduler that limits the energy consumption of
tasks while preserving scheduling patterns, which translates
to the QoS. The suggested scheme is implemented in a
commercial smartphone and evaluated. The evaluation
showed that the proposed scheme successfully provides
guaranteed operation time for prioritized tasks1.

Index Terms — energy-aware scheduling, battery
management, mobile operating systems, scheduling algorithms,
smartphones.

I. INTRODUCTION
Despite the explosive growth in smartphone hardware and

software, battery lifetime remains the primary source of user
dissatisfaction [1]. The battery capacity of mobile devices,
which primarily determines the battery lifetime, is limited by
the form-factor and external design of the devices. Therefore,
user dissatisfaction with battery lifetime is expected to remain
at least for the next few years.

Moreover, continual addition of diverse peripheral
components such as global positioning system (GPS), near-
field communication (NFC) and ambient sensors to
smartphones is broadening the fields for third-party
applications. This has resulted in a high degree of multitasking

1 This research was supported by Basic Science Research Program
(2012R1A1A2A10038823) through the National Research Foundation of
Korea (NRF), and also by the Core Technology Development of SW-SoC
Convergence Platform for Hyper-Connection Services among Smart Devices
based on Heterogeneous Multi-core Clusters through KEIT funded by the
Ministry of Science, ICT and Future Planning.

J. Cho was with the College of ICE, Sungkyunkwan University, Suwon,
Rep. of Korea. Currently, he is a Ph.D. student at the University of Utah, Salt
Lake City, USA (e-mail: jmanbal@csl.skku.edu).

Y. Woo is with the College of ICE, Sungkyunkwan University, Suwon,
Rep. of Korea (e-mail: mongmio@csl.skku.edu).

S. Kim is with the School of ECE, Ulsan National Institute of Science and
Technology, Ulsan, Rep. of Korea (E-mail: makeyoudance@unist.ac.kr).

E. Seo is with the College of ICE, Sungkyunkwan University, Suwon, Rep.
of Korea (e-mail: euiseong@skku.edu).

that leads to shorter battery lifetime. The unpredictability of
battery lifetime owing to high degrees of multitasking is
another source of user dissatisfaction.

Most smart phone systems provide tools for monitoring
battery charge and estimating the lifetime remaining for
batteries. However, most of the estimation methods currently
used are based on a rule-of-thumb approach that divides the
remaining battery charge by the energy-draining rate observed
for the entire system. This approach cannot correctly predict
battery lifetime when applications start and finish
spontaneously because these sudden changes affect the battery
draining rate and consequently the actual battery lifetime.
Despite this unpredictability in battery lifetime, users have
virtually no means to control the system operation time except
terminating inessential applications, hopefully, to save energy
and extend the operation time for other important applications.

Many researchers have attempted to control the energy
consumption of each application according to its
characteristics and priority. However, existing approaches
require redesign of applications so that applications provide
the operating systems with information about their energy
requirements, and the operating systems change behavior of
applications in response to the remaining battery charge. In
addition, operating systems have to be modified because they
have to deal with the complexity of different energy demands
from various applications. Such major restructuring usually
requires complicated programming interfaces for precise
control of energy usage, and all applications, even
insignificant background applications, have to explicitly
notify the kernel about their energy requirements through
these interfaces.

This paper proposes a scheme that guarantees the battery
lifetime for each application in a mobile system. Instead of
significant changes to both operating systems and
applications, the proposed scheme does not require any
changes in existing applications and can be applied with only
minor modification of operating systems. The approach
provides lifetime-guaranteed scheduling for selected
applications and best-effort scheduling for other applications.

A prototype of the suggested scheme was implemented in a
commercially successful open-source mobile operating system
and was ported to a commercial smart phone for evaluation.

The remainder of this paper is organized as follows. The
background and related works are introduced in Section II.
Section III proposes the battery lifetime scheme for selected
applications in a mobile device. Section IV describes

J. Cho et al.: A Battery Lifetime Guarantee Scheme for Selective Applications in Smart Mobile Devices 155

implementation of the prototype and presents evaluation
results, and Section V concludes the research and discusses
future research directions.

II. BACKGROUND AND MOTIVATION
Most mobile electronic devices, including laptops and smart

phones, predict remaining battery lifetime based on system-
wide power consumption history and remaining battery
charge. Although this type of simple estimation scheme
provides users with information about expected battery
lifetime, virtually no commercial systems provide effective
means for controlling lifetime [2].

Currently, a representative mobile operating system (OS)
monitors use of the following resources to estimate energy
consumption:

1) Processors: The OS calculates the processor energy
consumption by counting both the amount of processor
utilization time and clock frequency in an interval.
2) Networks: Four types of network resources are
monitored; phone, radio, Wi-Fi and Bluetooth. Phone and
radio are for phone calls and stand-by through 2G or 3G
networks, respectively.
3) Screen: The power consumption of the screen varies
according to its brightness.

 Using this power consumption model, the OS estimates how
much energy usage each resource contributes to the overall
system energy consumption [3]. However, the model only
considers the contribution ratio. Absolute system energy
consumption values are obtained from the battery sensor. By
aggregating information from these two sources, the OS can
calculate the amount of energy each resource and each
application consumes. The kernel battery driver notifies the
user-level energy management service of every 1% decrease
in battery charge, and actual calculations of energy
consumption by each resource and each application are
conducted in response to these notifications.

Although this typical approach is used in many mobile
electronic devices and is useful for predicting remaining
battery lifetime, as mentioned before, a mobile embedded OS
has no means to control the battery lifetime of the entire
system or to guarantee a predefined lifetime for an
application.

Applications that run on a mobile system at the same time
usually have different lifetime requirements. For example, a
movie player is only required for the duration of the movie,
whereas the operation time for a mail fetcher is much longer.
Some applications may have no lifetime requirements. These
applications should be scheduled when the system energy
status allows this. However, it is difficult for the system to tell
the lifetime requirement of each application and to decide
when to kill what applications for securing required battery
lifetime [4].

New applications are continually added to a mobile system,
and many applications are frequently updated. The same

application may even consume different amounts of energy,
depending on the underlying hardware. In addition to the
hardware, other coexisting applications may affect the energy
consumption of an application. Therefore, the amount of
energy required for an application is difficult to predict in its
design or implementation stage, and a battery lifetime
guarantee scheme should perform reactively to dynamic
changes in application energy consumption.

Users may run applications spontaneously at any time and
thus they should be able to request a battery lifetime guarantee
for newly executed applications whenever necessary. A
suitable system should allow lifetime guarantee requests as
long as the system conditions allow this.

Finally, a battery lifetime guarantee scheme should be
easily applicable to existing operating systems as well as
applications, and should provide simple and intuitive user
interfaces. To meet these goals, the scheme cannot depend on
energy usage information provided directly by applications.

Many models for predicting and controlling the battery
lifetime of mobile systems have been proposed.

For example, the Odyssey operating system [5] predicts
future energy use and remaining lifetime for a mobile system
based on the energy consumption history of the system. When
the remaining system energy becomes insufficient for the
user-requested lifetime, Odyssey requests that running
applications reduce their energy consumption by entering a
low-power mode. To support this scheme, developers have to
design and implement low-power modes for their applications.

Ravi et al. [6] proposed a system for context-aware battery
management that warns the user when it detects that the phone
battery can run out before the next charging opportunity is
encountered. Their approach collects diverse information
about user behavior and system status such as battery charging
interval, call-time log, current set of active applications and
battery discharging characteristics.

The Nemesis operating system [7] is similar to Odyssey in
terms of adaptive feedback to application fidelity according to
the energy status of the system. Nemesis uses an energy
consumption estimation model based on the activities of
devices after measuring the energy consumption of activities
for each device.

Bellosa et al. [8] proposed an energy-aware scheduler that
schedules threads in such a way that they will not exceed their
average energy consumption rate. Similar to Nemesis, the
energy-aware scheduler estimates the energy consumption of
threads based on performance counters in processors. If a
thread consumes more energy than is allowed, the scheduler
will schedule halt cycles instead of that thread. This approach
is partially employed by the proposed scheme in this paper to
control the energy consumption rate of each application.

The energy-centric operating system (ECOSystem) [9], [10]
considers energy as a first class resource. Each application is
given a certain amount of currentcy, a unit of energy
provision, periodically. The currentcy of an application is
calculated as the amount of energy the application consumes

156 IEEE Transactions on Consumer Electronics, Vol. 60, No. 1, February 2014

using system resources such as processors, disks or network
devices. When an application has no available currentcy, it
will not be scheduled.

Banga et al. [11] introduced a resource container that sees a
process as a resource principal and accurately accounts for
energy consumption for a specific activity carried out by an
application. Roy et al. [2], [12] proposed an energy-
controllable operating system for mobile devices named
Cinder by extending the resource container model.

Previous approaches to guarantee battery lifetime [5], [7]
required modification of applications to provide low-power
modes in which applications save energy at the expense of
service fidelity. In many studies [5], [8], [9], [10], the unit for
battery lifetime guarantee was the whole system, and not an
individual application. To guarantee battery lifetime for
individual applications, existing applications must be modified
to explicitly control their energy use via dedicated
programming interfaces [2], [12], [13]. Different from the
previous approaches, this paper proposes a scheme that
guarantees battery lifetime for individual applications without
any modification of existing applications. In addition, the
proposed scheme in this paper does not require users to be
aware of the energy consumption rate or resource usage of the
target applications. Instead, users only need to know how long
the target applications should last.

III. SELECTIVE BATTERY LIFETIME GUARANTEE SCHEME
The proposed lifetime guarantee system monitors the energy

consumption of each application and predicts the remaining
lifetime by aggregating information about monitored energy
consumption rates and current battery charge, as shown in Fig. 1. If
the remaining lifetime is shorter than the longest application
lifetime requirement, the scheme notifies the kernel so that the
kernel scheduler limits the energy consumption rates of
applications by scheduling applications restrictively or suspending
execution of applications without lifetime requirements.

Fig. 1. Conceptual diagram of the proposed approach.

A. System Architecture
The proposed approach consists of seven components, as

shown in Fig. 2. Among these, the battery manager, activity
manager, battery device driver and Linux kernel scheduler
already exist in many mobile operating systems, and these
components were extended to fit the needs of the proposed
scheme. The other components were newly added.

The managers belonging to the application framework,
including the activity and battery managers, are similar to
daemon processes and provide system services. The battery
manager monitors the battery status of the system during
operation. It periodically retrieves remaining battery charge
data given by the battery device driver in the kernel, and
analyzes the energy consumption that each application
contributes to the overall system consumption based on the
scheduling time for each application. The activity manager
tracks the scheduling time for each application and provides
information to the battery manager. The battery driver is an in-
kernel device driver that enables the kernel to control the
battery management circuits. It provides information about
battery status to the kernel.

Fig. 2. Components in the proposed scheme.

The battery lifetime manager is the center of the scheme. It
monitors the system status and controls energy expenditure
and task scheduling according to the system status observed.

There are five system states, as defined in Section III.B, and
the system is always in one of these states; Normal, Green,
Yellow, Red and Black. The system state determines the task
scheduling policy of the kernel. The battery lifetime manager
periodically observes the battery consumption rate, and
analyzes how much energy each application is consuming
through the battery manager and activity manager. The battery
lifetime manager also monitors the remaining battery charge.
Based on the information collected, it determines the desired
system state and changes the current system state accordingly.

When the remaining energy becomes insufficient to last for
the farthest application lifetime required, the battery lifetime
manager changes the system state to Red and orders the kernel
scheduler to enter the energy-constrained scheduling mode,
which is explained in detail in Section III.D. In the energy-
constrained scheduling mode, applications without lifetime
requirements are put into the sleep state and are therefore not
scheduled, so that they no longer consume energy.
Applications with lifetime requirements are allowed to run
under energy-constrained scheduling; however, the energy
consumption rate of each application is limited to its average
energy consumption rate observed so far.

To impose this energy consumption restriction, the battery
lifetime manager continually reports the energy consumption

J. Cho et al.: A Battery Lifetime Guarantee Scheme for Selective Applications in Smart Mobile Devices 157

rate of each application to the kernel. This information is
delivered to the energy allocator in the kernel. The energy
allocator determines the energy consumption rate allowable
for each application and notifies the scheduler of this when the
kernel enters the energy-constrained scheduling mode.

Finally, the battery manager application is a GUI-based
application like many other smart phone applications. Users
make requests to ensure the lifetimes of applications, or to
change or cancel previous lifetime guarantee requests via the
battery manager application. The requests are simply given in
terms of time such as ‘1 hour 30 minutes for the music
player’. The requests are delivered to the battery lifetime
manager to take effect.

B. System Modes
According to the lifetime requirements, remaining battery

charge and charging status, the system status is categorized as
one of the following five states:

1) Normal: No application requires a lifetime guarantee,
or the system is connected to an external power supply
such as an adapter. Consequently, no scheduling
restriction is enforced in this state.
2) Green: Although some applications require lifetime
guarantees, the remaining energy and system energy
consumption rate mean that there are no concerns
regarding battery lifetime.
3) Yellow: Some applications have lifetime requirements
and the system cannot survive to the longest lifetime owing
to the current energy consumption rate and remaining
battery charge. However, the scheduler may defer the
energy-constrained scheduling for a while.
4) Red: The scheduler must enter into the energy-
constrained scheduling mode immediately to meet the
lifetime requirements.
5) Black: Guaranteeing of the lifetime requirements is not
feasible. The system falls into this state when the user
newly requests a lifetime guarantee that is not feasible or
there are unexpected changes in the remaining charge.

From the viewpoint of the operating system, the Yellow state

is not different from the Green state. The operating system kernel
does nothing for the lifetime guarantee in either state. However,
the Yellow state exists to warn the user that the system will enter
the energy-constrained scheduling mode soon because
applications without lifetime requirements are sent to sleep under
energy-constrained scheduling and consequently the user cannot
manipulate these applications until the system returns to the
Normal state.

The energy consumption rate of the entire system significantly
changes when an application starts to execute or terminates. In
addition, some applications may involve enormous changes in
energy consumption rates because of their activity characteristics.
According to changes in energy circumstances, the system state
makes transitions as shown in Fig. 3.

When the smart phone gets connected to an external power
supply, the system returns to the Normal state, regardless of

what the current state is. The system makes a transition to the
Green state from the Normal state when an application
requests the lifetime guarantee while the system is not
connected to the external power supply.

Fig. 3. Transition diagram among the five energy management states.

The transition from Green to Yellow occurs when the
remaining battery charge is not sufficient for the longest
lifetime requested owing to the current energy consumption
rate. In the Yellow state, C gradually decreases. Therefore,
before the longest lifetime requested is due, the system
eventually enters the Red state. When this occurs, the battery
lifetime manager advises the kernel via a system call to
conduct energy-constrained scheduling.

The lifetime guarantee is surrendered under the Black state.
The transition to the Black state is made when a catastrophic
battery hardware failure or malfunction occurs, or a user
requests infeasible lifetime guarantee in the Green or Yellow
state. In the latter case, the transition to the Black state can be
thought as an advance notice that the recently added requests
are infeasible and should be withdrawn.

When an application with a lifetime requirement
temporarily decreases its energy consumption for a short time
in the Red state, the energy margin may increase to a positive
number. In this case, if the system returns to the Green state,
the system lifetime and the quality of service (QoS) for the
application that temporarily decreased in energy consumption
will be threatened by insufficient energy after the application
recovers its energy consumption rate. To prevent this problem,
once the system enters the Red state, it remains in this state
until either an application with a lifetime requirement finishes
or the device is connected to an external power supply.

There are multiple background system services in a mobile
device and these usually exist as daemon processes for system
management and support of diverse applications such as video
play and sound multiplexing. Even when there is sufficient
processor time for scheduling applications, they may not work
properly if the system services are not satisfactorily scheduled.

158 IEEE Transactions on Consumer Electronics, Vol. 60, No. 1, February 2014

Thus, system services are scheduled under all states. By this
approach, all system services are guaranteed to be scheduled
as they are in the Normal state until the end of the longest
application lifetime. As a result, the applications can obtain
the same QoS from the system services.

C. Lifetime Estimation
The battery manager tracks the energy consumption of each

application. The purpose of this monitoring is not to
accurately estimate the remaining battery lifetime, but to
approximate the current status of the system. Therefore, the
proposed scheme extends the energy consumption rate
estimation model of PowerVisor [14].

The activity manager periodically reads the scheduled time
duration for each application in the last time interval from the
proc file system. This information is sent to the battery manager.
From this information and the device usage history for each
application, the battery manager estimates the energy
consumption for each application in a time interval. An
application may consist of multiple tasks or threads. In the OS
used in this research, all tasks and threads belonging to the same
application have the same user ID (UID). Therefore, the system
can easily identify the overall energy consumption of an
application by adding the energy consumption of all threads and
tasks with an UID corresponding to that application. The
proposed scheme sees an application, which is a collection of
threads and tasks, as the unit of lifetime management.

For more accurate and rapid estimation, the battery lifetime
manager initiates the data collection process of the activity
manager whenever necessary. The prototype implementation
assesses the energy consumption and scheduling information
for each application at 1 min intervals. The smart phone,
which was used for the evaluation, updates the battery charge
register every 3.5 s, with an accuracy of 1.6 mAh. Therefore,
use of sampling intervals that are too short will induce a
significant overhead without improving the accuracy.

Fig. 4. Determination of application energy consumption.

An application may show dramatic changes in energy
consumption depending on its activities. If the system
determines the future energy consumption for an application
based on a transiently high consumption rate, the system will

enter the Red state prematurely and will interrupt the
execution of other applications without any gains. Therefore,
the system should not make a transition to the Red state based
on a transient increase in energy consumption.

Empirically, it was revealed that sampling and use of the last 4
min of data are sufficient to provide both sufficient accuracy and
stability if a greater weight is applied to more recent data, as
shown in Fig. 4. This approach is similar to that for conventional
DVFS algorithms [15]. However, both the sampling interval and
the estimation time window length, which is 4 min in the
prototype, may differ depending on the underlying hardware and
the purpose of the system.

When an application starts, its energy consumption rate is not
determined for 4 min, which is the estimation time window. If
the user requests a lifetime guarantee for a newly started
application before the first 4 min, the energy consumption of that
application cannot affect the system state. Thus, it is possible for
the system to enter the Black state immediately after the first 4
min of that application if the application uses excessive energy
during this interval. If this situation occurs, the system notifies
the user that the lifetime guarantee request is not feasible, rejects
the request and returns the system to its previous state.

The display takes significant portion in the overall energy
consumption of the system. To identify the display time for each
application, the application framework was modified so that it
can keep track of the display time of each application by
recording the state transition time-stamps for all applications. The
modified Battery Manager obtains the information about which
applications are on the display at a time point, and delegates the
energy consumed by the display to those applications.

Since the battery capacity, or its lifetime, is significantly
affected by its discharge rate [8], the battery lifetime is not
exactly in inverse proportion to the discharge rate. The remaining
charge may decrease faster than the energy consumption rate of
the system. However, this nature does not affect the accuracy of
the proposed scheme since it measures the energy consumption
rate of an application not by the system power consumption, but
by the remaining charge value changes of the battery, of which
the results come out of that characteristic. In addition, because
the model used by the proposed scheme estimates based on the
result of the energy consumption, not on the source of energy
consumption, it is easily expected that the proposed estimation
model performs more accurately than the existing algorithmic
resource control or rule-based scheduling techniques [16], which
ignore contextual factors [4].

D. Energy-Constrained Scheduler
In the Green and Yellow states, the system preserves energy

for applications with lifetime requirements as illustrated in
Fig. 5. Applications without lifetime requirements are
scheduled using only surplus energy.

As explained previously, the system enters the Red state
when the surplus energy is exhausted. Two significant
changes in scheduling policy occur in the Red state. First, the
scheduler suspends the execution of all applications without
lifetime requirements. Next, the scheduler prohibits the

J. Cho et al.: A Battery Lifetime Guarantee Scheme for Selective Applications in Smart Mobile Devices 159

applications with lifetime requirements from consuming more
energy than they did before the state transition.

Fig. 5. Resource allocation proportional to applications' energy usage
history.

The scheduler prepares a freezing queue for the energy-
constrained scheduler. Applications without lifetime requirements
are put into this queue in the Red state. The applications in this
queue will be popped out of the queue and scheduled normally
when the system exits from the Red state.

In the Red state, the scheduler limits the energy consumption of
applications using a time interval, called a fiscal interval, which is
usually a few seconds. The amount of energy that an application is
allowed to consume in a fiscal interval, which is called the energy
budget, is determined by the weighted average energy consumption
rate obtained as explained in Section III.C.

When each fiscal interval begins, the scheduler distributes
energy to applications according to their energy budget for the new
interval. Scheduling of an application is allowed as long as its
energy allocation remains. Each time the scheduler function in the
kernel is invoked, the function calculates the amount of energy
used by the current application after the last scheduling point. This
is calculated according to the estimation model used to obtain the
energy budgets of applications. The scheduler deducts the
consumed energy from the energy allocation of the current
application. When an application uses up its energy allocation, it is
put into the sleep queue and remains there until the next fiscal
interval begins. The energy remaining for an application after the
previous interval is carried over to the next fiscal interval.

The kernel returns to the normal scheduling policy when the
system exits from the Red state. Then applications that are frozen
will be removed from the frozen queue and resume their execution.

Implementation of a prototype of the suggested energy-
constrained scheduler revealed an unexpected phenomenon.
Under the energy-constrained scheduling mode, a
multimedia application is supposed to be scheduled with the
same amount of energy that it has used under the normal
scheduling mode. Consequently, no significant change in
QoS is expected. However, the QoS for multimedia
applications significantly decreased when they were
scheduled by the energy-constrained scheduler. For
example, a movie player in the Red state is scheduled with
the same energy consumption rate and thus the same
processor time as in the Green state. However, the frame-

per-second (FPS) rate of the movie player showed a huge
decrease after the system entered the Red state.

The reason for the QoS decrease was changes in application
scheduling patterns due to the energy-constrained scheduler. As
illustrated in Fig. 6(a), the applications without lifetime
requirements are frozen and the applications with remaining
lifetime requirements are continuously scheduled by the energy-
constrained scheduler, whereas execution of all applications is
interleaved under normal scheduling. If a multimedia or interactive
application uses up its energy allocation in the early stage of a fiscal
interval, it will not properly render movie frames or react to user
inputs in the later part of the fiscal interval.

(a) Without compulsory idle spreading.

 (b) With compulsory idle spreading.

Fig. 6. Energy-constrained scheduling changes application scheduling patterns.

A movie player typically uses surplus processor cycles for
buffering of future frames until the buffer is filled up. As a
result, a movie player can use up its energy allocation for
buffering only to find that it has no remaining energy to draw
down the buffered frames on time. A few different movie
players and games were tried, and all of them showed similar
phenomena. Zeng et al. [10] also pointed out the possibility of
this problem and suggested a conceptual solution named self-
pace, which delays a task if its energy consumption is ahead
of schedule during an interval. However, they did not show
any real examples of this behavior, how to delay task
execution to match the predetermined energy consumption
rate, and the effectiveness of their solution.

To prevent this anomaly, the energy-constrained scheduler
must preserve the scheduling patterns of applications as they
are in the normal scheduling mode. To accomplish this goal,
this paper also proposes a compulsory idle spreading scheme.

As shown in Fig. 6(b), the suggested scheme schedules an
idle thread instead of frozen applications in the energy-
constrained scheduling mode, so that the idle thread competes
with live applications for processor time, as frozen
applications do under normal scheduling. As a result, the
scheduling patterns for live applications remain the same
under energy-constrained scheduling as in the normal
scheduling mode. In fact, an idle thread does nothing but idle.

160 IEEE Transactions on Consumer Electronics, Vol. 60, No. 1, February 2014

Therefore, it consumes almost no energy except for a
negligible amount for the increased scheduling overhead.

IV. EVALUATION

A. Evaluation Environment
As mentioned, the suggested scheme was implemented in

an open source mobile embedded OS, and ported to
commercial smart phone hardware. Diverse applications were
used for the evaluation, as listed in TABLE 1.

TABLE 1
APPLICATIONS USED IN THE EVALUATION

Name Descriptions Required
Resource

Movie Movie play with a media player app. CPU, Screen
and Audio

Game Automated play of a 3D game CPU, Screen
and Audio

Web Visiting 16 sites randomly with random
thinking time from 500 ms to 13 s

CPU, Screen
and Wi-Fi

Music MP3 file play CPU and
Audio

Socket
Downloading small files from 420 bytes to
4200 bytes with random pause time from 1
s to 10 s

CPU and
Wi-Fi

Loop Repeating simple calculations continually CPU

Random
Simple calculation for random time
intervals from 1s to 10s with random
pause times from 1 s to 10 s

CPU

Multiple applications were executed at the same time

during the experiments. Some of them requested lifetime
guarantees to measure the accuracy of the proposed scheme.
Also, the FPS values for the movie player under energy-
constrained scheduling were measured to evaluate the
effectiveness of the compulsory idle spreading scheme.

B. Lifetime Guarantee Accuracy
Fig. 7 shows the time spent in each state when the system

runs three applications concurrently and only one of them
required a lifetime guarantee. At the beginning of each
experiment run, the remaining battery charge was set to last for
approximately two hours without using the proposed lifetime
guarantee scheme. The requested lifetimes for the prioritized
applications were 150 min. commonly in all experiments.

Unused means the leftover or surplus energy after passing the
requested lifetimes. A negative Unused value means that the
lifetime guarantee failed. A zero Unused value indicates that the
proposed scheme used all energy other than that set aside for
lifetime requests to run other applications. Finally, a positive
Unused value means that the system tended to enter the Red
state prematurely because of conservative energy management.
Naturally, the zero Unused value is the ideal case.

A positive Unused value was obtained in every experiment.
The amount of the unused energy differed in each experiment
and ranged from 0.8% to 16.8%. Investigation revealed that this
conservative behavior was caused by energy efficiency
improvement due to decrease in the degree of multiprocessing
in the Red state. The context switching overhead and the

frequency of timer clock interrupts are inversely proportional to
the degree of multiprocessing and processor utilization because
many modern operating systems employ the tickless kernel
architecture [17], which does not generate any timer interrupts
during idling. Therefore, energy consumption by the kernel for
scheduling and timer interrupt handling significantly decreased
in the Red state and thus the overall system energy consumption
tended to remain below the expected value. This tendency was
stronger without the compulsory idle spreading scheme, as
shown in Fig. 7, because the added idle thread induces extra
scheduling overhead.

Fig. 7. Accuracy of the suggested schemes when only one application
requests lifetime guarantee and the battery can last for approx. 120 min.
without the suggested scheme. (Applications with * have lifetime
requirements of 150 min.)

Although the system entered the Red state and therefore
prohibited the execution of applications without lifetime
requirements somewhat prematurely, the proposed scheme
successfully guaranteed the requested lifetimes in every trial.

This conservative characteristic was also found in
experiments that multiple applications have different lifetime
requirements. Fig. 8 shows the results for two out of three
concurrently running applications requiring guarantees of
different lifetimes according to TABLE 2. The results show
that 0.6~1.3% of the total energy remained unused after the
last lifetime expired when with the compulsory idle spreading
scheme and 4.1%~16% when without the compulsory idle
spreading scheme.

TABLE 2
ORIGINAL AND REQUESTED LIFETIMES

IN THE TWO-PRIORITIZED-APPLICATION EXPERIMENTS

Applications Original Requested

Game,Socket,Random approx. 120 min. Game: 132 min.
Socket: 100 min.

Movie,Random,Loop approx. 120 min. Movie: 150 min.
Random: 60 min.

Web,Music,Loop approx. 120 min. Web: 150 min.
Music: 110 min.

J. Cho et al.: A Battery Lifetime Guarantee Scheme for Selective Applications in Smart Mobile Devices 161

Both Fig. 7 and Fig. 8 show that requesting lifetime
guarantee for Game yielded significant Unused energy in
experiments configured without compulsory idle spreading.
Excluding the experiments with Game, the Unused energy
was below 7.2% even without compulsory idle spreading.
This significant Unused energy was caused by the same
reason that produced the QoS drop for movie players in
energy-constrained scheduling. When Game is not timely
scheduled, it skips rendering missed frames. Due to the
distorted scheduling pattern from energy-constrained
scheduling without compulsory idle spreading, frame skipping
occurred frequently in the Red state.

Fig. 8. Accuracy of the suggested scheme when two applications request
lifetime guarantee. (Applications surrounded by <> have lifetime
requirements.)

Consequently, the amount of computation load for Game
significantly decreased in the Red state. Because the
compulsory idle spreading scheme preserves scheduling
patterns of applications, the experiments including Game did
not yield distinctively large amount of unused energy in
comparison to the other experiments when compulsory idle
spreading was applied.

According to the evaluation results, the energy allocator
should consider the energy efficiency improvement for frozen
applications in the Red state to fully utilize the energy
remaining. However, this approach may increase the
possibility of lifetime guarantee failure.

C. Quality of Multimedia Applications
To assess the effectiveness of compulsory idle spreading, a

simple tool was implemented that records FPS time series data
for the movie player. The movie player requires approximately
50% of processor time to render video without frame drops in
the Green state. In the experiments, the system was running a
dummy background task consuming approximately 50%~60%
of processor time to impose processing load. The system was set
to enter the Red state forcibly immediately after the 4-min
energy estimation window. The fiscal interval was extended to 2
s to clearly show the FPS changes.

Fig. 9 shows the FPS distribution for movie player
operation for 1 h in the Red state. As expected, the FPS values
are clustered around both extremes in the absence of
compulsory idle spreading in Fig. 9(a). In the first half of a
fiscal interval, the frame rate of the movie player was too fast,
at approximately up to 50 FPS. On the contrary, in the second
half, the frame rate dropped below 10 FPS because the energy
allocation was used up early by too much buffering. As shown
in Fig. 9(b), the FPS distribution remained stable around 20
FPS, which is similar to that in the Normal state.

Scheduling pattern changes in energy-constrained
scheduling had a greater effect on sound quality than on video
quality. Without compulsory idle spreading, movie sound was
severely fragmented, whereas the sound played as smoothly
under compulsory idle spreading as under normal scheduling.

(a) Scheduling without compulsory idle spreading.

(b) Scheduling with compulsory idle spreading.

Fig. 9. Distribution of frame-per-second values under energy-constrained
scheduling.

V. CONCLUSION AND DISCUSSION
Currently, energy in a mobile smart device is provided to all

applications in a best-effort manner and therefore users cannot
predict and control the lifetime of each application accurately.

This paper proposes a scheme that guarantees the battery
lifetime required for individual applications in a mobile device.
Different from previous approaches, it does not require any

162 IEEE Transactions on Consumer Electronics, Vol. 60, No. 1, February 2014

modification of existing applications or operating systems.
Applications do not need to be aware of remaining battery
charge in the proposed scheme. In addition to the lifetime
guarantee scheme, this paper proposed a QoS-preserving
energy-constrained scheduler.

The evaluation results show that the proposed scheme
successfully guaranteed required lifetimes when they are
initially identified as feasible. In addition, the evaluation showed
that the compulsory idle spreading scheme significantly reduces
QoS decreases during energy-constrained scheduling.

The suggested battery lifetime scheme can improve the
dependability and reliability of smart phone applications.
Consequently, it is expected to improve the product value of
smart phones by resolving the significant portion of user
dissatisfaction.

The proposed approach, however, is only applicable to and
effective for applications without severe fluctuation in energy
consumption rates. For example, there may be a sudden phone
call, which must be carried out by a prioritized application, after
the system gets into the Red state. Future research will focus on
resolving this issue by more accurate energy management and
energy reservation based on behavior prediction of each
application.

REFERENCES
[1] CFI Group, “CFI Group smartphone satisfaction study 2009,” White

Paper, 2009.
[2] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazieres, and N.

Zeldovich, “Energy management in mobile devices with the Cinder
operating system,” in Proceedings of the 6th European Conference on
Computer Systems, 2011, pp. 139–152.

[3] M. Kim, J. Kong, and S. Chung, "Enhancing online power estimation
accuracy for smartphones," IEEE Transactions on Consumer Electronics,
vol.58, no.2, pp.333–339, 2012.

[4] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. Rice, “Exhausting
battery statistics,” Proc. ACM Mobiheld, 2010.

[5] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications,” in Proceedings of the 17th ACM Symposium on
Operating Systems Principles, 1999.

[6] N. Ravi, J. Scott, L. Han, and L. Iftode, “Context-aware battery
management for mobile phones,” in Proceedings of the 6th Annual IEEE
International Conference on Pervasive Computing and Communications,
2008.

[7] R. Neugebauer and D. McAuley, “Energy is just another resource: En-
ergy accounting and energy pricing in the Nemesis OS,” in Proceedings
of the 8th Workshop on Hot Topics in Operating Systems, 2002.

[8] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in Proceedings of the 9th ACM SIGOPS European
Workshop, 2000.

[9] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat, “ECOSystem: managing
energy as a first class operating system resource,” ACM SIGPLAN
Notices, vol. 37, no. 10, pp. 123–132, 2002.

[10] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat, “Currentcy: Unifying
policies for resource management,” in Proceedings of the USENIX 2003
Annual Technical Conference, 2003.

[11] G. Banga, P. Druschel, and J. Mogul, “Resource containers: A new
facility for resource management in server systems,” Operating Systems
Review, vol. 33, pp. 45–58, 1998.

[12] S. Rumble, R. Stutsman, P. Levis, D. Mazieres, and N. Zeldovich,
“Apprehending joule thieves with Cinder,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 1, pp. 106–111, 2010.

[13] S.P. Kamat, "Energy management architecture for multimedia
applications in battery powered devices," IEEE Transactions on
Consumer Electronics, vol.55, no.2, pp.763–767, 2009.

[14] N. Zhang, P. Ramanathan, K. Kim, and S. Banerjee, “Powervisor: a
battery virtualization scheme for smartphones,” in Proceedings of the
third ACM workshop on Mobile Cloud Computing and Services, 2012.

[15] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of
dynamic voltage scaling algorithms,” in Proceedings of the 1998
International Symposium on Low Power Electronics and Design, 1998.

[16] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday, “An architecture
for the effective support of adaptive context-aware applications,” in
Proceedings of the 2nd International Conference on Mobile Data
Management, 2001.

[17] S. Siddha, V. Pallipadi, and A. V. D. Ven, “Getting maximum mileage
out of tickless,” in Proceedings of the Linux Symposium, vol. Vol. 2,
2007, pp. 201–208.

BIOGRAPHIES

Jungwook Cho received his B.S. in Computer
Engineering from Pukyong National University in 2009,
and M.S. in Computer Engineering from Ulsan National
Institute of Science and Technology (UNIST) in 2011. He
was in the research staff at Sungkyunkwan University.
Currently, he is a Ph.D. student at the University of Utah,
USA. His research interests are in mobile operating

systems, energy management and real-time systems.

Youngjoo Woo received her B.S. degree from Inha
University in 2009, and received M.S. degree in electrical
and computer engineering at UNIST in 2012. Currently
she is a Ph.D. student at Sungkyunkwan University,
Korea. Her research interests are embedded systems,
power-aware computing, virtualization and cloud
computing.

Suntae Kim received his BS degree in electrical and
computer engineering at UNIST in 2013. Currently, he is
in the MS degree program at UNIST. His research interest
covers system software, virtualization, and embedded
systems.

Euiseong Seo received his BS, MS, and PhD degree in
computer science from KAIST in 2000, 2002, and 2007,
respectively. He is currently an associate professor in
college of ICE at Sungkyunkwan University, Korea.
Before joining Sungkyunkwan University in 2012, he had
been an assistant professor at UNIST, Korea from 2009 to
2012, and a research associate at the Pennsylvania State

University from 2007 to 2009. His research interests are in power-aware
computing, real-time systems, embedded systems, and virtualization.

J. Cho et al.: A Battery Lifetime Guarantee Scheme for Selective Applications in Smart Mobile Devices 163

