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Abstract — Unpredictable battery lifetime arising from 

multitasking can have a significant negative effect on 
availability for mobile devices. In practice, some applications 
are prioritized and required to remain in operation for certain 
duration. This paper suggests a battery lifetime guaranteeing 
scheme for prioritized applications in multitasking mobile 
systems. The proposed approach profiles and analyzes the 
battery usage pattern of each task dynamically, and preserves 
the energy budget for operation of prioritized tasks for a 
guaranteed time. In addition, this paper proposes an energy-
constrained scheduler that limits the energy consumption of 
tasks while preserving scheduling patterns, which translates 
to the QoS. The suggested scheme is implemented in a 
commercial smartphone and evaluated. The evaluation 
showed that the proposed scheme successfully provides 
guaranteed operation time for prioritized tasks1. 
 

Index Terms — energy-aware scheduling, battery 
management, mobile operating systems, scheduling algorithms, 
smartphones. 

I. INTRODUCTION 
Despite the explosive growth in smartphone hardware and 

software, battery lifetime remains the primary source of user 
dissatisfaction [1]. The battery capacity of mobile devices, 
which primarily determines the battery lifetime, is limited by 
the form-factor and external design of the devices. Therefore, 
user dissatisfaction with battery lifetime is expected to remain 
at least for the next few years. 

Moreover, continual addition of diverse peripheral 
components such as global positioning system (GPS), near-
field communication (NFC) and ambient sensors to 
smartphones is broadening the fields for third-party 
applications. This has resulted in a high degree of multitasking 
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that leads to shorter battery lifetime. The unpredictability of 
battery lifetime owing to high degrees of multitasking is 
another source of user dissatisfaction. 

Most smart phone systems provide tools for monitoring 
battery charge and estimating the lifetime remaining for 
batteries. However, most of the estimation methods currently 
used are based on a rule-of-thumb approach that divides the 
remaining battery charge by the energy-draining rate observed 
for the entire system. This approach cannot correctly predict 
battery lifetime when applications start and finish 
spontaneously because these sudden changes affect the battery 
draining rate and consequently the actual battery lifetime. 
Despite this unpredictability in battery lifetime, users have 
virtually no means to control the system operation time except 
terminating inessential applications, hopefully, to save energy 
and extend the operation time for other important applications. 

Many researchers have attempted to control the energy 
consumption of each application according to its 
characteristics and priority. However, existing approaches 
require redesign of applications so that applications provide 
the operating systems with information about their energy 
requirements, and the operating systems change behavior of 
applications in response to the remaining battery charge. In 
addition, operating systems have to be modified because they 
have to deal with the complexity of different energy demands 
from various applications. Such major restructuring usually 
requires complicated programming interfaces for precise 
control of energy usage, and all applications, even 
insignificant background applications, have to explicitly 
notify the kernel about their energy requirements through 
these interfaces. 

This paper proposes a scheme that guarantees the battery 
lifetime for each application in a mobile system. Instead of 
significant changes to both operating systems and 
applications, the proposed scheme does not require any 
changes in existing applications and can be applied with only 
minor modification of operating systems. The approach 
provides lifetime-guaranteed scheduling for selected 
applications and best-effort scheduling for other applications. 

A prototype of the suggested scheme was implemented in a 
commercially successful open-source mobile operating system 
and was ported to a commercial smart phone for evaluation. 

The remainder of this paper is organized as follows. The 
background and related works are introduced in Section II. 
Section III proposes the battery lifetime scheme for selected 
applications in a mobile device. Section IV describes 
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implementation of the prototype and presents evaluation 
results, and Section V concludes the research and discusses 
future research directions. 

II. BACKGROUND AND MOTIVATION 
Most mobile electronic devices, including laptops and smart 

phones, predict remaining battery lifetime based on system-
wide power consumption history and remaining battery 
charge. Although this type of simple estimation scheme 
provides users with information about expected battery 
lifetime, virtually no commercial systems provide effective 
means for controlling lifetime [2]. 

Currently, a representative mobile operating system (OS) 
monitors use of the following resources to estimate energy 
consumption: 

1) Processors: The OS calculates the processor energy 
consumption by counting both the amount of processor 
utilization time and clock frequency in an interval. 
2) Networks: Four types of network resources are 
monitored; phone, radio, Wi-Fi and Bluetooth. Phone and 
radio are for phone calls and stand-by through 2G or 3G 
networks, respectively. 
3) Screen: The power consumption of the screen varies 
according to its brightness. 

 
  Using this power consumption model, the OS estimates how 
much energy usage each resource contributes to the overall 
system energy consumption [3]. However, the model only 
considers the contribution ratio. Absolute system energy 
consumption values are obtained from the battery sensor. By 
aggregating information from these two sources, the OS can 
calculate the amount of energy each resource and each 
application consumes. The kernel battery driver notifies the 
user-level energy management service of every 1% decrease 
in battery charge, and actual calculations of energy 
consumption by each resource and each application are 
conducted in response to these notifications. 

Although this typical approach is used in many mobile 
electronic devices and is useful for predicting remaining 
battery lifetime, as mentioned before, a mobile embedded OS 
has no means to control the battery lifetime of the entire 
system or to guarantee a predefined lifetime for an 
application. 

Applications that run on a mobile system at the same time 
usually have different lifetime requirements. For example, a 
movie player is only required for the duration of the movie, 
whereas the operation time for a mail fetcher is much longer. 
Some applications may have no lifetime requirements. These 
applications should be scheduled when the system energy 
status allows this. However, it is difficult for the system to tell 
the lifetime requirement of each application and to decide 
when to kill what applications for securing required battery 
lifetime [4]. 

New applications are continually added to a mobile system, 
and many applications are frequently updated. The same 

application may even consume different amounts of energy, 
depending on the underlying hardware. In addition to the 
hardware, other coexisting applications may affect the energy 
consumption of an application. Therefore, the amount of 
energy required for an application is difficult to predict in its 
design or implementation stage, and a battery lifetime 
guarantee scheme should perform reactively to dynamic 
changes in application energy consumption. 

Users may run applications spontaneously at any time and 
thus they should be able to request a battery lifetime guarantee 
for newly executed applications whenever necessary. A 
suitable system should allow lifetime guarantee requests as 
long as the system conditions allow this. 

Finally, a battery lifetime guarantee scheme should be 
easily applicable to existing operating systems as well as 
applications, and should provide simple and intuitive user 
interfaces. To meet these goals, the scheme cannot depend on 
energy usage information provided directly by applications.  

Many models for predicting and controlling the battery 
lifetime of mobile systems have been proposed.  

For example, the Odyssey operating system [5] predicts 
future energy use and remaining lifetime for a mobile system 
based on the energy consumption history of the system. When 
the remaining system energy becomes insufficient for the 
user-requested lifetime, Odyssey requests that running 
applications reduce their energy consumption by entering a 
low-power mode. To support this scheme, developers have to 
design and implement low-power modes for their applications. 

Ravi et al. [6] proposed a system for context-aware battery 
management that warns the user when it detects that the phone 
battery can run out before the next charging opportunity is 
encountered. Their approach collects diverse information 
about user behavior and system status such as battery charging 
interval, call-time log, current set of active applications and 
battery discharging characteristics.  

The Nemesis operating system [7] is similar to Odyssey in 
terms of adaptive feedback to application fidelity according to 
the energy status of the system. Nemesis uses an energy 
consumption estimation model based on the activities of 
devices after measuring the energy consumption of activities 
for each device. 

Bellosa et al. [8] proposed an energy-aware scheduler that 
schedules threads in such a way that they will not exceed their 
average energy consumption rate. Similar to Nemesis, the 
energy-aware scheduler estimates the energy consumption of 
threads based on performance counters in processors. If a 
thread consumes more energy than is allowed, the scheduler 
will schedule halt cycles instead of that thread. This approach 
is partially employed by the proposed scheme in this paper to 
control the energy consumption rate of each application. 

The energy-centric operating system (ECOSystem) [9], [10] 
considers energy as a first class resource. Each application is 
given a certain amount of currentcy, a unit of energy 
provision, periodically. The currentcy of an application is 
calculated as the amount of energy the application consumes 
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using system resources such as processors, disks or network 
devices. When an application has no available currentcy, it 
will not be scheduled.  

Banga et al. [11] introduced a resource container that sees a 
process as a resource principal and accurately accounts for 
energy consumption for a specific activity carried out by an 
application. Roy et al. [2], [12] proposed an energy-
controllable operating system for mobile devices named 
Cinder by extending the resource container model. 

Previous approaches to guarantee battery lifetime [5], [7] 
required modification of applications to provide low-power 
modes in which applications save energy at the expense of 
service fidelity. In many studies [5], [8], [9], [10], the unit for 
battery lifetime guarantee was the whole system, and not an 
individual application. To guarantee battery lifetime for 
individual applications, existing applications must be modified 
to explicitly control their energy use via dedicated 
programming interfaces [2], [12], [13]. Different from the 
previous approaches, this paper proposes a scheme that 
guarantees battery lifetime for individual applications without 
any modification of existing applications. In addition, the 
proposed scheme in this paper does not require users to be 
aware of the energy consumption rate or resource usage of the 
target applications. Instead, users only need to know how long 
the target applications should last. 

III. SELECTIVE BATTERY LIFETIME GUARANTEE SCHEME 
The proposed lifetime guarantee system monitors the energy 

consumption of each application and predicts the remaining 
lifetime by aggregating information about monitored energy 
consumption rates and current battery charge, as shown in Fig. 1. If 
the remaining lifetime is shorter than the longest application 
lifetime requirement, the scheme notifies the kernel so that the 
kernel scheduler limits the energy consumption rates of 
applications by scheduling applications restrictively or suspending 
execution of applications without lifetime requirements.  

 
Fig. 1. Conceptual diagram of the proposed approach. 

A. System Architecture 
The proposed approach consists of seven components, as 

shown in Fig. 2. Among these, the battery manager, activity 
manager, battery device driver and Linux kernel scheduler 
already exist in many mobile operating systems, and these 
components were extended to fit the needs of the proposed 
scheme. The other components were newly added. 

The managers belonging to the application framework, 
including the activity and battery managers, are similar to 
daemon processes and provide system services. The battery 
manager monitors the battery status of the system during 
operation. It periodically retrieves remaining battery charge 
data given by the battery device driver in the kernel, and 
analyzes the energy consumption that each application 
contributes to the overall system consumption based on the 
scheduling time for each application. The activity manager 
tracks the scheduling time for each application and provides 
information to the battery manager. The battery driver is an in-
kernel device driver that enables the kernel to control the 
battery management circuits. It provides information about 
battery status to the kernel. 

 
Fig. 2. Components in the proposed scheme. 

The battery lifetime manager is the center of the scheme. It 
monitors the system status and controls energy expenditure 
and task scheduling according to the system status observed. 

There are five system states, as defined in Section III.B, and 
the system is always in one of these states; Normal, Green, 
Yellow, Red and Black. The system state determines the task 
scheduling policy of the kernel. The battery lifetime manager 
periodically observes the battery consumption rate, and 
analyzes how much energy each application is consuming 
through the battery manager and activity manager. The battery 
lifetime manager also monitors the remaining battery charge. 
Based on the information collected, it determines the desired 
system state and changes the current system state accordingly. 

When the remaining energy becomes insufficient to last for 
the farthest application lifetime required, the battery lifetime 
manager changes the system state to Red and orders the kernel 
scheduler to enter the energy-constrained scheduling mode, 
which is explained in detail in Section III.D. In the energy-
constrained scheduling mode, applications without lifetime 
requirements are put into the sleep state and are therefore not 
scheduled, so that they no longer consume energy. 
Applications with lifetime requirements are allowed to run 
under energy-constrained scheduling; however, the energy 
consumption rate of each application is limited to its average 
energy consumption rate observed so far. 

To impose this energy consumption restriction, the battery 
lifetime manager continually reports the energy consumption 
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rate of each application to the kernel. This information is 
delivered to the energy allocator in the kernel. The energy 
allocator determines the energy consumption rate allowable 
for each application and notifies the scheduler of this when the 
kernel enters the energy-constrained scheduling mode.  

Finally, the battery manager application is a GUI-based 
application like many other smart phone applications. Users 
make requests to ensure the lifetimes of applications, or to 
change or cancel previous lifetime guarantee requests via the 
battery manager application. The requests are simply given in 
terms of time such as ‘1 hour 30 minutes for the music 
player’. The requests are delivered to the battery lifetime 
manager to take effect. 

B. System Modes 
According to the lifetime requirements, remaining battery 

charge and charging status, the system status is categorized as 
one of the following five states: 

 
1) Normal: No application requires a lifetime guarantee, 
or the system is connected to an external power supply 
such as an adapter. Consequently, no scheduling 
restriction is enforced in this state. 
2) Green: Although some applications require lifetime 
guarantees, the remaining energy and system energy 
consumption rate mean that there are no concerns 
regarding battery lifetime. 
3)  Yellow: Some applications have lifetime requirements 
and the system cannot survive to the longest lifetime owing 
to the current energy consumption rate and remaining 
battery charge. However, the scheduler may defer the 
energy-constrained scheduling for a while. 
4)  Red: The scheduler must enter into the energy-
constrained scheduling mode immediately to meet the 
lifetime requirements. 
5) Black: Guaranteeing of the lifetime requirements is not 
feasible. The system falls into this state when the user 
newly requests a lifetime guarantee that is not feasible or 
there are unexpected changes in the remaining charge. 

 
From the viewpoint of the operating system, the Yellow state 

is not different from the Green state. The operating system kernel 
does nothing for the lifetime guarantee in either state. However, 
the Yellow state exists to warn the user that the system will enter 
the energy-constrained scheduling mode soon because 
applications without lifetime requirements are sent to sleep under 
energy-constrained scheduling and consequently the user cannot 
manipulate these applications until the system returns to the 
Normal state. 

The energy consumption rate of the entire system significantly 
changes when an application starts to execute or terminates. In 
addition, some applications may involve enormous changes in 
energy consumption rates because of their activity characteristics. 
According to changes in energy circumstances, the system state 
makes transitions as shown in Fig. 3. 

When the smart phone gets connected to an external power 
supply, the system returns to the Normal state, regardless of 

what the current state is. The system makes a transition to the 
Green state from the Normal state when an application 
requests the lifetime guarantee while the system is not 
connected to the external power supply. 

 
Fig. 3. Transition diagram among the five energy management states. 

The transition from Green to Yellow occurs when the 
remaining battery charge is not sufficient for the longest 
lifetime requested owing to the current energy consumption 
rate. In the Yellow state, C gradually decreases. Therefore, 
before the longest lifetime requested is due, the system 
eventually enters the Red state. When this occurs, the battery 
lifetime manager advises the kernel via a system call to 
conduct energy-constrained scheduling. 

The lifetime guarantee is surrendered under the Black state. 
The transition to the Black state is made when a catastrophic 
battery hardware failure or malfunction occurs, or a user 
requests infeasible lifetime guarantee in the Green or Yellow 
state. In the latter case, the transition to the Black state can be 
thought as an advance notice that the recently added requests 
are infeasible and should be withdrawn. 

When an application with a lifetime requirement 
temporarily decreases its energy consumption for a short time 
in the Red state, the energy margin may increase to a positive 
number. In this case, if the system returns to the Green state, 
the system lifetime and the quality of service (QoS) for the 
application that temporarily decreased in energy consumption 
will be threatened by insufficient energy after the application 
recovers its energy consumption rate. To prevent this problem, 
once the system enters the Red state, it remains in this state 
until either an application with a lifetime requirement finishes 
or the device is connected to an external power supply. 

There are multiple background system services in a mobile 
device and these usually exist as daemon processes for system 
management and support of diverse applications such as video 
play and sound multiplexing. Even when there is sufficient 
processor time for scheduling applications, they may not work 
properly if the system services are not satisfactorily scheduled. 
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Thus, system services are scheduled under all states. By this 
approach, all system services are guaranteed to be scheduled 
as they are in the Normal state until the end of the longest 
application lifetime. As a result, the applications can obtain 
the same QoS from the system services. 

C. Lifetime Estimation 
The battery manager tracks the energy consumption of each 

application. The purpose of this monitoring is not to 
accurately estimate the remaining battery lifetime, but to 
approximate the current status of the system. Therefore, the 
proposed scheme extends the energy consumption rate 
estimation model of PowerVisor [14]. 

The activity manager periodically reads the scheduled time 
duration for each application in the last time interval from the 
proc file system. This information is sent to the battery manager. 
From this information and the device usage history for each 
application, the battery manager estimates the energy 
consumption for each application in a time interval. An 
application may consist of multiple tasks or threads. In the OS 
used in this research, all tasks and threads belonging to the same 
application have the same user ID (UID). Therefore, the system 
can easily identify the overall energy consumption of an 
application by adding the energy consumption of all threads and 
tasks with an UID corresponding to that application. The 
proposed scheme sees an application, which is a collection of 
threads and tasks, as the unit of lifetime management.  

For more accurate and rapid estimation, the battery lifetime 
manager initiates the data collection process of the activity 
manager whenever necessary. The prototype implementation 
assesses the energy consumption and scheduling information 
for each application at 1 min intervals. The smart phone, 
which was used for the evaluation, updates the battery charge 
register every 3.5 s, with an accuracy of 1.6 mAh. Therefore, 
use of sampling intervals that are too short will induce a 
significant overhead without improving the accuracy. 

 
Fig. 4. Determination of application energy consumption. 

An application may show dramatic changes in energy 
consumption depending on its activities. If the system 
determines the future energy consumption for an application 
based on a transiently high consumption rate, the system will 

enter the Red state prematurely and will interrupt the 
execution of other applications without any gains. Therefore, 
the system should not make a transition to the Red state based 
on a transient increase in energy consumption. 

Empirically, it was revealed that sampling and use of the last 4 
min of data are sufficient to provide both sufficient accuracy and 
stability if a greater weight is applied to more recent data, as 
shown in Fig. 4. This approach is similar to that for conventional 
DVFS algorithms [15]. However, both the sampling interval and 
the estimation time window length, which is 4 min in the 
prototype, may differ depending on the underlying hardware and 
the purpose of the system. 

When an application starts, its energy consumption rate is not 
determined for 4 min, which is the estimation time window. If 
the user requests a lifetime guarantee for a newly started 
application before the first 4 min, the energy consumption of that 
application cannot affect the system state. Thus, it is possible for 
the system to enter the Black state immediately after the first 4 
min of that application if the application uses excessive energy 
during this interval. If this situation occurs, the system notifies 
the user that the lifetime guarantee request is not feasible, rejects 
the request and returns the system to its previous state. 

The display takes significant portion in the overall energy 
consumption of the system. To identify the display time for each 
application, the application framework was modified so that it 
can keep track of the display time of each application by 
recording the state transition time-stamps for all applications. The 
modified Battery Manager obtains the information about which 
applications are on the display at a time point, and delegates the 
energy consumed by the display to those applications. 

Since the battery capacity, or its lifetime, is significantly 
affected by its discharge rate [8], the battery lifetime is not 
exactly in inverse proportion to the discharge rate. The remaining 
charge may decrease faster than the energy consumption rate of 
the system. However, this nature does not affect the accuracy of 
the proposed scheme since it measures the energy consumption 
rate of an application not by the system power consumption, but 
by the remaining charge value changes of the battery, of which 
the results come out of that characteristic. In addition, because 
the model used by the proposed scheme estimates based on the 
result of the energy consumption, not on the source of energy 
consumption, it is easily expected that the proposed estimation 
model performs more accurately than the existing algorithmic 
resource control or rule-based scheduling techniques [16], which 
ignore contextual factors [4]. 

D. Energy-Constrained Scheduler 
In the Green and Yellow states, the system preserves energy 

for applications with lifetime requirements as illustrated in 
Fig. 5. Applications without lifetime requirements are 
scheduled using only surplus energy.  

As explained previously, the system enters the Red state 
when the surplus energy is exhausted. Two significant 
changes in scheduling policy occur in the Red state. First, the 
scheduler suspends the execution of all applications without 
lifetime requirements. Next, the scheduler prohibits the 
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applications with lifetime requirements from consuming more 
energy than they did before the state transition. 

 
Fig. 5. Resource allocation proportional to applications' energy usage 
history. 

The scheduler prepares a freezing queue for the energy-
constrained scheduler. Applications without lifetime requirements 
are put into this queue in the Red state. The applications in this 
queue will be popped out of the queue and scheduled normally 
when the system exits from the Red state. 

In the Red state, the scheduler limits the energy consumption of 
applications using a time interval, called a fiscal interval, which is 
usually a few seconds. The amount of energy that an application is 
allowed to consume in a fiscal interval, which is called the energy 
budget, is determined by the weighted average energy consumption 
rate obtained as explained in Section III.C. 

When each fiscal interval begins, the scheduler distributes 
energy to applications according to their energy budget for the new 
interval. Scheduling of an application is allowed as long as its 
energy allocation remains. Each time the scheduler function in the 
kernel is invoked, the function calculates the amount of energy 
used by the current application after the last scheduling point. This 
is calculated according to the estimation model used to obtain the 
energy budgets of applications. The scheduler deducts the 
consumed energy from the energy allocation of the current 
application. When an application uses up its energy allocation, it is 
put into the sleep queue and remains there until the next fiscal 
interval begins. The energy remaining for an application after the 
previous interval is carried over to the next fiscal interval. 

The kernel returns to the normal scheduling policy when the 
system exits from the Red state. Then applications that are frozen 
will be removed from the frozen queue and resume their execution. 

Implementation of a prototype of the suggested energy-
constrained scheduler revealed an unexpected phenomenon. 
Under the energy-constrained scheduling mode, a 
multimedia application is supposed to be scheduled with the 
same amount of energy that it has used under the normal 
scheduling mode. Consequently, no significant change in 
QoS is expected. However, the QoS for multimedia 
applications significantly decreased when they were 
scheduled by the energy-constrained scheduler. For 
example, a movie player in the Red state is scheduled with 
the same energy consumption rate and thus the same 
processor time as in the Green state. However, the frame-

per-second (FPS) rate of the movie player showed a huge 
decrease after the system entered the Red state. 

The reason for the QoS decrease was changes in application 
scheduling patterns due to the energy-constrained scheduler. As 
illustrated in Fig. 6(a), the applications without lifetime 
requirements are frozen and the applications with remaining 
lifetime requirements are continuously scheduled by the energy-
constrained scheduler, whereas execution of all applications is 
interleaved under normal scheduling. If a multimedia or interactive 
application uses up its energy allocation in the early stage of a fiscal 
interval, it will not properly render movie frames or react to user 
inputs in the later part of the fiscal interval. 

 
(a) Without compulsory idle spreading. 

 
 (b) With compulsory idle spreading. 

Fig. 6. Energy-constrained scheduling changes application scheduling patterns. 

A movie player typically uses surplus processor cycles for 
buffering of future frames until the buffer is filled up. As a 
result, a movie player can use up its energy allocation for 
buffering only to find that it has no remaining energy to draw 
down the buffered frames on time. A few different movie 
players and games were tried, and all of them showed similar 
phenomena. Zeng et al. [10] also pointed out the possibility of 
this problem and suggested a conceptual solution named self-
pace, which delays a task if its energy consumption is ahead 
of schedule during an interval. However, they did not show 
any real examples of this behavior, how to delay task 
execution to match the predetermined energy consumption 
rate, and the effectiveness of their solution. 

To prevent this anomaly, the energy-constrained scheduler 
must preserve the scheduling patterns of applications as they 
are in the normal scheduling mode. To accomplish this goal, 
this paper also proposes a compulsory idle spreading scheme. 

As shown in Fig. 6(b), the suggested scheme schedules an 
idle thread instead of frozen applications in the energy-
constrained scheduling mode, so that the idle thread competes 
with live applications for processor time, as frozen 
applications do under normal scheduling. As a result, the 
scheduling patterns for live applications remain the same 
under energy-constrained scheduling as in the normal 
scheduling mode. In fact, an idle thread does nothing but idle. 
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Therefore, it consumes almost no energy except for a 
negligible amount for the increased scheduling overhead. 

IV. EVALUATION 

A. Evaluation Environment 
As mentioned, the suggested scheme was implemented in 

an open source mobile embedded OS, and ported to 
commercial smart phone hardware. Diverse applications were 
used for the evaluation, as listed in TABLE 1. 

TABLE 1 
APPLICATIONS USED IN THE EVALUATION  

Name Descriptions Required 
Resource 

Movie Movie play with a media player app. CPU, Screen 
and Audio 

Game Automated play of a 3D game CPU, Screen 
and Audio 

Web Visiting 16 sites randomly with random 
thinking time from 500 ms to 13 s 

CPU, Screen 
and Wi-Fi 

Music MP3 file play CPU and 
Audio 

Socket 
Downloading small files from 420 bytes to 
4200 bytes with random pause time from 1 
s to 10 s 

CPU and  
Wi-Fi 

Loop Repeating simple calculations continually CPU 

Random 
Simple calculation for random time 
intervals from 1s to 10s with random 
pause times from 1 s to 10 s 

CPU 

 
Multiple applications were executed at the same time 

during the experiments.  Some of them requested lifetime 
guarantees to measure the accuracy of the proposed scheme. 
Also, the FPS values for the movie player under energy-
constrained scheduling were measured to evaluate the 
effectiveness of the compulsory idle spreading scheme. 

B. Lifetime Guarantee Accuracy 
Fig. 7 shows the time spent in each state when the system 

runs three applications concurrently and only one of them 
required a lifetime guarantee. At the beginning of each 
experiment run, the remaining battery charge was set to last for 
approximately two hours without using the proposed lifetime 
guarantee scheme. The requested lifetimes for the prioritized 
applications were 150 min. commonly in all experiments. 

Unused means the leftover or surplus energy after passing the 
requested lifetimes. A negative Unused value means that the 
lifetime guarantee failed. A zero Unused value indicates that the 
proposed scheme used all energy other than that set aside for 
lifetime requests to run other applications. Finally, a positive 
Unused value means that the system tended to enter the Red 
state prematurely because of conservative energy management. 
Naturally, the zero Unused value is the ideal case. 

A positive Unused value was obtained in every experiment. 
The amount of the unused energy differed in each experiment 
and ranged from 0.8% to 16.8%. Investigation revealed that this 
conservative behavior was caused by energy efficiency 
improvement due to decrease in the degree of multiprocessing 
in the Red state. The context switching overhead and the 

frequency of timer clock interrupts are inversely proportional to 
the degree of multiprocessing and processor utilization because 
many modern operating systems employ the tickless kernel 
architecture [17], which does not generate any timer interrupts 
during idling. Therefore, energy consumption by the kernel for 
scheduling and timer interrupt handling significantly decreased 
in the Red state and thus the overall system energy consumption 
tended to remain below the expected value. This tendency was 
stronger without the compulsory idle spreading scheme, as 
shown in Fig. 7, because the added idle thread induces extra 
scheduling overhead. 

 
Fig. 7. Accuracy of the suggested schemes when only one application 
requests lifetime guarantee and the battery can last for  approx. 120 min. 
without the suggested scheme. (Applications  with * have lifetime 
requirements of 150 min.) 

Although the system entered the Red state and therefore 
prohibited the execution of applications without lifetime 
requirements somewhat prematurely, the proposed scheme 
successfully guaranteed the requested lifetimes in every trial. 

This conservative characteristic was also found in 
experiments that multiple applications have different lifetime 
requirements. Fig. 8 shows the results for two out of three 
concurrently running applications requiring guarantees of 
different lifetimes according to TABLE 2. The results show 
that 0.6~1.3% of the total energy remained unused after the 
last lifetime expired when with the compulsory idle spreading 
scheme and 4.1%~16% when without the compulsory idle 
spreading scheme. 

TABLE 2 
ORIGINAL AND REQUESTED LIFETIMES  

IN THE TWO-PRIORITIZED-APPLICATION EXPERIMENTS  

Applications  Original  Requested  

Game,Socket,Random approx. 120 min.  Game: 132 min. 
Socket: 100 min.  

Movie,Random,Loop  approx. 120 min.  Movie: 150 min. 
Random: 60 min.  

Web,Music,Loop  approx. 120 min.  Web: 150 min.  
Music: 110 min.  
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Both Fig. 7 and Fig. 8 show that requesting lifetime 
guarantee for Game yielded significant Unused energy in 
experiments configured without compulsory idle spreading. 
Excluding the experiments with Game, the Unused energy 
was below 7.2% even without compulsory idle spreading. 
This significant Unused energy was caused by the same 
reason that produced the QoS drop for movie players in 
energy-constrained scheduling. When Game is not timely 
scheduled, it skips rendering missed frames. Due to the 
distorted scheduling pattern from energy-constrained 
scheduling without compulsory idle spreading, frame skipping 
occurred frequently in the Red state.  

 
Fig. 8. Accuracy of the suggested scheme when two applications request 
lifetime guarantee. (Applications surrounded by <> have lifetime 
requirements.) 

Consequently, the amount of computation load for Game 
significantly decreased in the Red state. Because the 
compulsory idle spreading scheme preserves scheduling 
patterns of applications, the experiments including Game did 
not yield distinctively large amount of unused energy in 
comparison to the other experiments when compulsory idle 
spreading was applied. 

According to the evaluation results, the energy allocator 
should consider the energy efficiency improvement for frozen 
applications in the Red state to fully utilize the energy 
remaining. However, this approach may increase the 
possibility of lifetime guarantee failure. 

C. Quality of Multimedia Applications 
To assess the effectiveness of compulsory idle spreading, a 

simple tool was implemented that records FPS time series data 
for the movie player. The movie player requires approximately 
50% of processor time to render video without frame drops in 
the Green state. In the experiments, the system was running a 
dummy background task consuming approximately 50%~60% 
of processor time to impose processing load. The system was set 
to enter the Red state forcibly immediately after the 4-min 
energy estimation window. The fiscal interval was extended to 2 
s to clearly show the FPS changes. 

Fig. 9 shows the FPS distribution for movie player 
operation for 1 h in the Red state. As expected, the FPS values 
are clustered around both extremes in the absence of 
compulsory idle spreading in Fig. 9(a). In the first half of a 
fiscal interval, the frame rate of the movie player was too fast, 
at approximately up to 50 FPS. On the contrary, in the second 
half, the frame rate dropped below 10 FPS because the energy 
allocation was used up early by too much buffering. As shown 
in Fig. 9(b), the FPS distribution remained stable around 20 
FPS, which is similar to that in the Normal state. 

Scheduling pattern changes in energy-constrained 
scheduling had a greater effect on sound quality than on video 
quality. Without compulsory idle spreading, movie sound was 
severely fragmented, whereas the sound played as smoothly 
under compulsory idle spreading as under normal scheduling. 

 
(a) Scheduling without compulsory idle spreading. 

 
(b) Scheduling with compulsory idle spreading. 

 
Fig. 9. Distribution of frame-per-second values under energy-constrained 
scheduling. 

V. CONCLUSION AND DISCUSSION 
Currently, energy in a mobile smart device is provided to all 

applications in a best-effort manner and therefore users cannot 
predict and control the lifetime of each application accurately. 

This paper proposes a scheme that guarantees the battery 
lifetime required for individual applications in a mobile device. 
Different from previous approaches, it does not require any 
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modification of existing applications or operating systems. 
Applications do not need to be aware of remaining battery 
charge in the proposed scheme. In addition to the lifetime 
guarantee scheme, this paper proposed a QoS-preserving 
energy-constrained scheduler. 

The evaluation results show that the proposed scheme 
successfully guaranteed required lifetimes when they are 
initially identified as feasible. In addition, the evaluation showed 
that the compulsory idle spreading scheme significantly reduces 
QoS decreases during energy-constrained scheduling. 

The suggested battery lifetime scheme can improve the 
dependability and reliability of smart phone applications. 
Consequently, it is expected to improve the product value of 
smart phones by resolving the significant portion of user 
dissatisfaction. 

The proposed approach, however, is only applicable to and 
effective for applications without severe fluctuation in energy 
consumption rates. For example, there may be a sudden phone 
call, which must be carried out by a prioritized application, after 
the system gets into the Red state. Future research will focus on 
resolving this issue by more accurate energy management and 
energy reservation based on behavior prediction of each 
application. 
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