

Nicolás Badano, Youngjoo Woo, Jeaho Hwang, and Euiseong Seo

Abstract — The heterogeneous multicore architecture is
considered a cogent solution to match the performance
demand for processing the next-generation media formats
such as ultra-high definition, 3D or holography. However, the
performance cores in a heterogeneous multicore processor
dissipate a huge amount of heat. To cope with the thermal risk,
most modern embedded processors provide the dynamic
thermal management (DTM) feature that forcefully reduces
the clock speed of the processors. Although this simple
approach can maintain the system temperature below the
thermal trip point, the performance of prioritized multimedia
or interactive applications can be significantly harmed by the
reduced performance even when the thermal crisis is caused
mostly by the non-prioritized applications. This paper
proposes a novel DTM scheme called Thermal Margin
Preservation (TMP). TMP differentiates the thermal trip point
for the prioritized applications from that for the non-
prioritized ones, and thus forms the thermal margin, which is
the temperature gap between the two trip points. Under the
proposed scheme, the prioritized applications can run without
any disturbance in the thermal margin by sacrificing the
performance only of the non-prioritized applications. The
evaluation shows that the proposed scheme significantly
reduces the quality-of-service degradation for video playback
under high temperature conditions1.

Index Terms — Dynamic thermal management, Temperature,
Thermal model, Heterogeneous multicore

I. INTRODUCTION
The next-generation multimedia formats, such as 3D, ultra-

high-definition, or holography videos, demand extremely high
performance to process. Additionally, the number of third-
party applications, often demanding significant performance,

1 This work was supported in part by the Institute for Information &

communications Technology Promotion (IITP) under Grant No.10041244,
Smart TV 2.0 Software Platform, and No. B0101-15-0644, Research on High
Performance and Scalable Manycore Operating System, funded by the Korea
government (MSIP).

N. Badano was with Sungkyunkwan University, Suwon, South Korea. He
is now with JP Morgan Chase & Co., Glasgow, United Kingdom. (e-mail:
nicolas.badano@gmail.com).

Y. Woo is with Sungkyunkwan University, Suwon, South Korea (e-
mail:mongmio@csl.skku.edu).

J. Hwang was with Korea Advanced Institute of Science and Technology,
Daejeon, South Korea. He is now with RTST Co. Ltd., Daejeon, South Korea.
(e-mail:jhhwang@rtst.co.kr).

E. Seo is with Sungkyunkwan University, Suwon, South Korea (e-mail:
euiseong@skku.edu).

is rapidly increasing. At the same time, the energy efficiency
and power consumption issues are growing in importance.

The heterogeneous multicore architecture, which integrates
high-performance cores and energy-efficient cores on the
same die, is considered a promising solution to break through
the aforementioned antithetical requirements for the
embedded processors of the consumer electronics.

The high-performance cores in a heterogeneous multicore
processor usually adopt out-of-order architecture, which
consumes a significantly larger amount of power than the
normal embedded processors for the sake of high performance.
Consequently, the long-term operation of the high-
performance cores will dissipate a huge amount of heat, and
the accumulated heat will bring the thermal crisis to the
system.

However, in contrast to PCs or server systems, which can
easily accommodate large heat sinks or multiple fans, the heat
dissipation capacity of the thermal solutions used in consumer
electronic devices is marginal due to the strict limitations of
both design-form factors and manufacturing costs. As a result,
thermal management is an important issue for the consumer
electronics that adopt the heterogeneous multicore processors.

To overcome the thermal issue, most modern embedded
processors are equipped with dynamic thermal management
(DTM) schemes that lower the clock speed via dynamic
voltage and frequency scaling (DVFS) when the system
temperature rises above the predefined thermal trip point. This
simple and straightforward approach easily controls the
system temperature to prevent it from exceeding the thermal
trip point. However, the conventional DTM scheme frequently
fails to preserve the quality of services (QoS) of interactive or
multimedia applications.

The workloads with timeliness requirements, such as
multimedia players or games, are very dynamic when it comes
to CPU utilization [1]. They present sporadic CPU-intensive
execution phases to maintain the target QoS; frame rate for the
aforementioned examples. The conventional DTM scheme
blindly slows down the execution of all processes, including
the multimedia or interactive workloads [2], even when most
of the accumulated heat is generated by long-term background
tasks, such as cloud backup, virus scanning, and so on.

To deal with the thermal risk of consumer electronics, this
paper proposes Thermal Margin Preservation (TMP), a novel
DTM scheme. TMP introduces the notion of a thermal margin
that is defined as the difference between the software-defined
thermal trip-point, which is enforced on non-prioritized

A Thermal Margin Preservation Scheme for
Interactive Multimedia Consumer Electronics

N. Badano et al.: A Thermal Margin Preservation Scheme for Interactive Multimedia Consumer Electronics 53

0098 3063/16/$20.00 © 2016 IEEE

Contributed Paper
Manuscript received 12/30/15
Current version published 03/30/16
Electronic version published 03/30/16

applications, and the highest temperature allowed by the
hardware vendor. TMP allows the prioritized applications,
such as foreground interactive ones, to execute without
performance degradation, while the execution of non-
prioritized applications is controlled to reduce the system
temperature when the current temperature lies in between
these two thermal ceilings. Consequently, under the proposed
scheme, the QoS of the prioritized applications will be barely
affected by the thermal management most of the time.

The proposed scheme was implemented on an embedded
system, which is popularly used for smart phones and smart
TVs. The prototype implementation was evaluated to measure
the improvement in the QoS under high heat conditions.

The remainder of this paper is organized as follows. Section
II illustrates the motivation behind this research. Based on this
motivation, Section III proposes the TMP scheme. Section IV
describes the prototype implementation of the proposed
scheme and presents the evaluation results. After the related
work is introduced in Section V, Section VI concludes this
study and discusses further research.

II. MOTIVATION
The existing DTM defines the appropriate reaction to the

predefined temperature levels and carries it out according to
the current temperature. This mechanism can be implemented
in the firmware of the system-on-chip (SoC). However, in
many cases, the DTM is implemented in the thermal driver
module of the operating system (OS) kernel.

The embedded system, which was used in this research,
shows a typical DTM implementation. The thermal driver of
the kernel for the embedded board defines three temperature
levels and their corresponding cooling policies as described in
TABLE I.

TABLE I

CONVENTIONAL THERMAL MANAGEMENT POLICIES
Temperature (℃) Policy

110 Clock speed scaling
115 Notification
120 Cut off CPU execution

When the current temperature exceeds 110 ºC, the driver

adjusts the clock speed according to the following rules inside
a loop that samples the temperature every few milliseconds; i)
If the current temperature is above the tripping point and the
temperature is rising, then the driver reduces the CPU clock
speed by one step. ii) If the current temperature is below the
tripping point and the temperature is falling, then the driver
increases the clock speed.

At 115 ºC, the thermal management unit (TMU) notifies the
OS kernel about the critical condition, and at 120 ºC, the TMU
brutally shuts down the processor. Therefore, the OS should
regard the clock speed scaling point as the practical upper
bound of the system temperature.

This mechanism is considered as a straightforward DVFS in
reaction to the current temperature state. It is unaware of the

nature of the executing threads, whether with timeliness
requirement or not, and it does not care about how the user
experience becomes affected by the decreased performance.

To identify the thermal management scheme’s performance
impact on the interactive applications, diverse system
parameters, such as system temperature, clock frequency and
processor utilization, were monitored during the execution of
two applications, which are extensively described in Section
IV and represent a prioritized foreground task and background
tasks, respectively.

The target system for this research was chosen to represent
a typical heterogeneous multicore architecture, which is
widely used by the consumer electronic devices as mentioned
previously. In the target system, the four performance cores
were grouped as the performance core cluster, while the other
four energy-efficient cores were grouped as the energy-
efficient core cluster. Either the performance or the energy-
efficient cluster could be activated at any point in time, and
the power management module would determine the cluster to
operate.

TABLE II

AVAILABLE CLOCK FREQUENCIES OF TARGET SYSTEM
Frequency (GHz)

1.6 GHz, 1.5 GHz, 1.4 GHz, 1.3 GHz, 1.2 GHz,
1.1 GHz, 1.0 GHz, 0.9 GHz, 0.8 GHz,

As shown in TABLE II, the processor provides multiple

clock levels to the power management module in the kernel.
The maximum operating clock frequency of the energy
efficient core cluster is 1.2 GHz, and that of the performance
core cluster is 1.6 GHz. When the power management module
adjusts the clock frequency to a value higher than 1.2 GHz,
the performance core cluster will be activated, whereas the
energy-efficient core cluster will run. For example, when the
power management module raises the target operating clock
frequency to 1.3 GHz from 1.2 GHz, the cores in the
performance core cluster will exit from the sleep state and run
at 1.3 GHz while the cores in the energy-efficient core cluster,
which operated at 1.2 GHz, will instead enter the sleep state.

Fig. 1. Thermal management impact on the application execution

54 IEEE Transactions on Consumer Electronics, Vol. 62, No. 1, February 2016

As Fig. 1 shows, it was common for the clock frequency to
drop by five or more steps due to the thermal crisis. This
aggressive downscaling will translate into the saturation of the
total processor utilization. Even when the processor utilization
saturated and the prioritized tasks were not given sufficient
processor resource, the background tasks consumed significant
amounts of the processor resource, as shown in Fig. 1.

Interactive or multimedia applications, such as games, web
browsers, and multimedia file players, are very unpredictable
in terms of the performance demand at any given time partly
because they largely depend on human interaction and input
data. Therefore, interactive workloads have sporadic
execution phases that require high processing power, which is
called the high-performance burst.

Fig. 2. Notion of thermal margin

If the interactive tasks were the primary source of the

thermal crisis, it would be a reasonable and unavoidable
solution to retard the execution of them. However, in many
cases, the high temperature results from the heat accumulation
caused by executing the long-term background tasks. In such
a situation, the high-performance burst of a prioritized task
may become the small but concluding contributor to the user-
perceivable QoS degradation, as shown in the problem
scenario of Fig. 2.

Obviously, it would be desirable that the QoS of the
prioritized tasks be protected from performance downscaling
due to the heat dissipated by the non-prioritized tasks. This
would be achievable if the DTM scheme could predict the
increase in temperature contributed by the sporadic activation
of prioritized applications and could maintain the system
temperature below a certain threshold, which would be
determined based on the prediction as shown in the desired
scenario of Fig. 2.

III. DESIGN OF THERMAL MARGIN SCHEME
The design objective of the TMP scheme is to preserve the

thermal margin so that the temperature does not hit the
thermal trip point even when the high-performance bursts of
prioritized tasks occur.

In contrast to the conventional DTM mechanisms, which
reactively respond to the current temperature, TMP employs a
proactive approach. Therefore, TMP can be used together
with the conventional DTM. In this case, the conventional
DTM, as a safeguard mechanism, will respond to catastrophic
situations, where the temperature rises above the hardware-
defined thermal trip point, by abruptly adjusting the clock
frequency.

Fig. 3 shows the basic workflow of the TMP scheme. A
thermal model is required to predict how high the temperature
will rise from the current temperature, caused by the heat
dissipated by the high-performance bursts of the prioritized
tasks. The constructed model will be used to determine
whether the system is in a safe state in terms of thermal
management. When the system is determined to be in a
dangerous condition, TMP restricts the execution of non-
prioritized or non-interactive threads, which do not affect the
user experience. Therefore, TMP includes the technique that
identifies the interactive threads out of all existing threads in
the system. Finally, TMP provides the cooling policies and
selects one of them according to the situation so that it can
control the system temperature while preserving the
performance of prioritized applications.

Fig. 3. TMP system overview

The following subsections present detailed descriptions of

the introduced components of TMP.

A. Thermal model
One of the main contributions of TMP is its predictive

nature. What enables TMP to predict the temperature change
is a thermal trend model of the system-on-chip (SoC). A
thermal model is fundamentally a temperature change curve in
the function of time, depending on various factors, including
the processor load, clock speed, number of active cores,
processor temperature, and ambient temperature. With this
curve, TMP is able to predict what the temperature value will
be in the future.

The thermal model is built by the model builder process,
and the model should be constructed during the first boot and
any system reconfiguration. The model builder collects the
required data to construct the model while performing a series
of stress tests. During the test runs, the model builder proceeds
to execute stress tests under all possible core configurations.
The model builder records the temperature readings in the
function of time and deduces the temperature curve for a
given core configuration depending on the time change.

The on-chip temperature sensors may have an uncertainty
of several degrees. However, the model is not for estimating
the absolute temperature, but for predicting the relative
temperature distance from the thermal ceiling, which is also
determined by the on-chip temperature sensor. In addition, the
model is built from the large set of collected temperature data.
Consequently, the inaccuracy of the temperature sensors
trivially influences the effectiveness of the model.

N. Badano et al.: A Thermal Margin Preservation Scheme for Interactive Multimedia Consumer Electronics 55

The ambient temperature affects how quickly a system
dissipates produced heat. Therefore, it determines the
sustaining temperature and speed of the temperature change of
the system. While most of the modern embedded processors
are equipped with processor temperature sensors, they are
rarely furnished with ambient temperature sensors. Therefore,
the temperature model indirectly infers the ambient
temperature from the test run results. Thus, if the ambient
temperature changes dramatically, the model should be built
again. However, the observation showed that minor changes,
such as 10 ºC, of the ambient temperature negligibly impacted
the accuracy of the model.

The model built with this approach showed the R2 value,
which is a measure of how well the model fits the observed
data, of 0.998 indicating the high accuracy of the curves.
Similar approaches or observations were introduced by a
number of existing research results [2],[3].

TMP predicts the estimated time of arrival (ETA) at the
thermal trip point in the current core configuration based on
the built model. To reduce the overhead for the kernel when
predicting the ETA, TMP creates the ETA tables based on the
thermal model and stores them inside the kernel. Because the
temperature granularity is 1-degree Celsius, the tables only
took a few KB for the experimental system.

Each of the ETA tables represents a thermal trend curve for
a specific core configuration; for example, four high-
performance cores running at 1.5 GHz. An entry in a table is
indexed by the current temperature, and holds the calculated
ETA at the thermal ceiling.

B. Interactive thread identification
An interactive thread is defined as a thread that affects the

user experience. A typical stimulus-reaction cycle of an
application consists of multiple interactive threads working
collaboratively, and this chain of interactive threads must
finish the cycle within the human perception threshold,
usually 50 ms [4]. Therefore, it is essential that TMP be aware
of which threads are prioritized ones.

TMP detects interactive threads, and puts them into the
interactive thread group, as follows.

First, a user input, such as a screen touch or a button press,
is detected via the input framework of the platform. The
thread that is responsible for handling this input event will be
put into the interactive thread group. Then, the inter-process
communication (IPC) mechanisms will be monitored for IPCs
between any thread belonging to the interactive thread group
and any other thread that is not in this group. When a
communication is detected, TMP flags the non-interactive
counterpart as an interactive one and puts it into the
interactive thread group.

The end result is a set of threads whose members at a given
moment are directly or indirectly responsible for the user
experience. TMP treats the threads in the interactive groups as
prioritized threads.

C. Scheduling Dynamics
TMP monitors the processor utilization contributed only by

the interactive threads, number of active cores, clock frequency,
and current processor temperature at every 10 ms interval to
determine the current ETA at the thermal trip point, as well as
determines the appropriate cooling policy. The 10 ms monitoring
interval is also used by the ondemand governor [5], which is
used as the default power management module of the Linux
kernel, and has been verified to incur insignificant overhead.

The TMP mechanism defines three thermal states as shown
in Fig. 4, in which the system will be at any given time. The
basic descriptions of the states are as follows:
9 Safe state: no thermal crisis, proceed at full capacity.
9 Alarm state: thermal crisis ahead, take preventive action.
9 Danger state: ongoing thermal crisis, assess the situation

and take further action if necessary.

Fig. 4. Thermal state diagram

While the system is in the safe state, TMP regularly checks the

temperature changes. If the temperature is rising, then TMP
consults the thermal model about whether the ETA is larger than
the thermal margin, which is the sum of the recorded longest burst
cycle of each thread group.

If TMP detects that the ETA at the trip point in the current core
configuration is shorter than the thermal margin, then the system
enters the alarm state. The alarm state is a transitional state in which
the system applies a new cooling policy and moves to the danger
state. An appropriate cooling policy to reverse or relieve the
temperature change may differ, depending on the circumstances.
Section III.C discusses the details of the cooling policies.

Once a cooling policy has been applied TMP will cross over to
the danger state. At this state, TMP will assess the impact of the
cooling policy applied in the alarm state at every monitoring
interval. Since the cooling policy changed the core configuration,
TMP selects the appropriate ETA table reflecting the current core
configuration.

There are four possible scenarios for the monitored system status
in the danger state as shown in Fig. 5.
9 S1) The temperature is still ascending, and the ETA is shorter

than the determined thermal margin.
9 S2) The temperature is still ascending, but the ETA is longer

than the determined thermal margin.
9 S3) The temperature is descending, but the ETA at the

maximum performance level is shorter than the
determined thermal margin.

9 S4) The temperature is descending, and the ETA is longer
than the determined thermal margin even at the maximum
performance level.

56 IEEE Transactions on Consumer Electronics, Vol. 62, No. 1, February 2016

Fig. 5. Four possible scenarios in the danger state

Under S1, the current cooling policy is clearly insufficient

to control the temperature, and eventually, the system will hit
the thermal ceiling. Consequently, TMP pulls back the system
to the alarm state, applies a more aggressive cooling policy,
and pushes the system into the danger state again.

TMP maintains the danger state under S2 and S3 because
unleashing the performance will likely threaten the system’s
thermal stability and harm the QoS of the prioritized
applications. However, because the temperature is well
controlled with the current cooling policy under S2 and S3,
TMP keeps monitoring and does not apply any further action
to cool down the system more aggressively.

Under S4, the source of the heat may have gone, or at least,
the risk has been significantly reduced by the current cooling
policy. To improve the performance of the non-interactive
threads, TMP reverts the system to the safe state so that the
system can function at its maximum performance level.

D. Cooling Policy

Fig. 6. Inputs and outputs of cooling policy decision heuristics

Fig. 6 shows an overview of the cooling decision heuristic’s

inputs and outputs. It will take the system state values profiled
by TMP in a data sampling instance, as explained earlier,
apply the decision heuristics to choose an appropriate cooling
policy, and create a new core configuration suitable for the
current circumstances according to the chosen policy.

The leakage power consumption significantly contributes to
the overall heat dissipation; for example, approximately 35%
in the target system. However, the leakage power is barely
controllable. Therefore, cooling down is mostly enforced by
regulating the dynamic power consumption.

There are two alternative policies to cool down the system
temperature; shrinking the number of active cores and
decreasing the clock speed. Although both approaches will
significantly reduce the heat dissipation, reducing the clock
speed will retard the execution of all threads, while shrinking

the number of active cores will deprive low priority threads of
the chances to be scheduled.

Before a cooling policy is applied, the scheduling priorities
of non-prioritized threads are adjusted to the lowest level and
those of prioritized ones to the highest level so that the non-
prioritized threads yield the processor resource to the
prioritized threads if possible.

The first heuristic of TMP is to shrink the number of active
cores because the execution time of prioritized threads will
less likely change in comparison to the other option. It is
technically challenging to determine the sweet spot of the
number of active cores that will safely maintain the system
temperature while minimizing the impact on the execution
time. To simplify this problem, TMP turns off cores one by
one until the number of interactive threads becomes greater
than or equal to twice the amount of active cores. The
rationale behind this is that having less than two threads per
core will not take advantage of the super-scalar, out-of-order
and simultaneous multi-threading (SMT) capabilities of
modern processor architecture, while more than two threads
per core will possibly generate significant resource contention
within the core. However, the adequate number of threads per-
core may differ depending on the workload characteristics and
the micro-architecture of the processor.

When the number of active cores becomes equal to twice
the number of interactive threads, the second heuristic, which
lowers the clock speed by one step, is applied.

However, if the processor utilization contributed by the
interactive threads rises above a predefined threshold (for
example, 70 %) TMP will neither decrease the clock speed
nor reduce the number of active cores. TMP will also maintain
the current core configuration because the saturated processor
utilization will result in the delayed response of interactive
applications.

It is noteworthy that these heuristics are straightforward and
have a lot of room for improvement, not only in the
algorithms but also in using the emerging hardware
capabilities that novel architecture provides. For example, the
embedded system used in this research can activate either the
energy-efficient core cluster or high-performance core cluster,
not both at the same time due to the difficulties in the cache
coherence protection between both core clusters. However,
the cutting edge heterogeneous multicore architecture
overcame this limitation and can simultaneously operate both
core clusters [6]. With this technology, TMP may migrate
non-prioritized threads to the energy-efficient cores while
keeping the prioritized ones in the performance cores to cool
down the system.

E. QoS Watchdog
So far, the tactics to create the thermal margin and to

preserve the performance of the prioritized applications have
been described. Of course, in a real situation, a thermal-
efficient core configuration will not be sustainable indefinitely.
At some point in time, the workload will require an increase in
processing power. In other words, as previously defined,

N. Badano et al.: A Thermal Margin Preservation Scheme for Interactive Multimedia Consumer Electronics 57

sporadic high-performance bursts are expected to happen at
any moment without any warning. Therefore, TMP also needs
a mechanism to detect these high-performance bursts and
change the core configurations to satisfy the newly increased
processing demand. This is where the QoS watchdog comes
into play.

The QoS watchdog is the last but not the least important
component of TMP. As illustrated in Fig. 7, the watchdog
component regularly samples the processor utilization of
interactive threads. If a predefined threshold is reached, then
TMP will proceed to increase the processor performance by
one step in an inverse way of the heuristic algorithm to
determine the cooling policy. The processor utilization
threshold of the QoS watchdog may differ from the one used
for the cooling policy determination algorithm, and it is
recommended to be higher than that. In the evaluation, the
threshold of the QoS watchdog was set to 80 %.

Fig. 7. High-performance bursts detection by QoS watchdog

At this point, TMP has two components fighting for

antagonistic interest. On one hand, the cooling decision
component pulls to reduce the processor performance; on the
other hand, the QoS watchdog pushes to increase the
processor performance. These two forces will work together
to create the desired equilibrium when it is possible. The state
diagram shown in Fig. 8 explains how both antagonistic
components work together simultaneously.

Fig. 8. Dynamics of performance level determination

F. Limitations
Determining the optimal size of the thermal margin would

be desirable for the ideal operation of TMP because a large
one would degrade the performance of the background
workload, and a small one could lead to a thermal crisis.
Finding the optimal size of the thermal margin would indicate
the mechanism’s upfront knowledge of the lengths of the
high-performance bursts for a given interactive workload,
which would not be possible. Because of this point, the
current implementation of TMP tries to build the largest

margin possible by summing the longest burst cycle of each
interactive thread group. Naturally, this approach adversely
impacts the performance of the background workloads.

Nevertheless, this issue can be resolved by an in-depth
analysis of the workload behavior. For example, TMP can
apply a statistical approach to estimate the acceptable level of
thermal margin for a given application. Moreover, to deduce
the optimal thermal margin, TMP may accurately simulate
what will happen to the overall processor burst cycle when
multiple interactive thread groups are competing for the
processor resource. The research on the determination of the
thermal margin is beyond the scope of this paper, which
proposes and realizes the concept of the differentiated thermal
management based on the workload characteristics, and is left
as a future research theme.

IV. EVALUATION
In order to evaluate the effectiveness of TMP in

maintaining user experiences for interactive applications, a
comparative experiment was conducted. TMP with the out-of-
the-box DTM was compared with the power management
mechanism included in the Linux distribution built for the
target embedded system.

For the workload, a scenario that provided sufficient levels
of stress to the processor was emulated in order to reach high
temperature. In addition, a possible common use-case for
modern consumer electronic devices, such as smart phones,
smart TVs, or tablets, was represented in the scenario.

The workload consisted of two applications running
simultaneously, a background application and a foreground
one, as described in TABLE III. The background task
emulated a long-term computing-intensive application, such as
background file encryption, pattern matching for malware
detection, scanning for memory deduplication, 3D data
processing, multimedia file encoding, and so on. The types of
such background tasks are expected to increase as the
functionalities and features of consumer electronics expand.
Three computation workload instances were created and
executed to stress all four cores.

TABLE III

DESCRIPTION OF EXPERIMENTAL WORKLOADS
Workload Type Description

Video player Interactive Video playback of 1080p/29.97 fps files
Computation Background SPEC2006 benchmarks

As a representative example of a foreground multimedia

workload, a video player was chosen because it was easy to
quantitatively measure the QoS degradation, which could be
indicated by frame skipping. On the other hand, quantitatively
measuring the QoS of other interactive applications, such as
games or web browsers, would be technically difficult
although the experiments with diverse video games clearly
showed sensory QoS improvement by applying TMP.

Six threads were forked and executed for the video player,
and the processing demand for the video playback

58 IEEE Transactions on Consumer Electronics, Vol. 62, No. 1, February 2016

significantly fluctuated depending on the characteristics of the
frames to be rendered. For example, rendering fast-moving
scenes required higher performance than rendering still scenes.
Therefore, the high-performance bursts sporadically appeared,
and the duration of them would be difficult to predict, as
mentioned.

The mixture of the workloads was executed on the target
system introduced in Section II. To make the comparison, the
workloads were first run on the unmodified Linux kernel,
which included the ondemand power management module and
the default DTM module, which was explained in Section II.
Then, the workloads were run on the Linux kernel with TMP.
The ondemand power management module was disabled to
prevent interference with TMP. The workloads were executed
for two minutes, and the series of experiments was repeated
several times after sufficiently cooling down the board. The
time series graphs shown in this paper are select from the
repetitions to show the representative characteristics.

Fig. 9. Time series of frame skip duration under different DTM schemes

To quantitatively measure the user experience degradation,
debug data were collected from the video player. The video
rendering software would skip frames of footage when the
processing power was unavailable. This would translate into a
slow frame rate and bad quality video, both directly related to the
user experience. The debug data would show the amount of
milliseconds of a video frame skipped by the video renderer at
any given moment.

Fig. 9 shows the time series of the duration of skipped frames
during the first 90 s of the experiment. Each vertical line
represents the length of time without rendering the frames on
time. A frame skip instance longer than 50 ms is clearly
noticeable, and the one longer than 100 ms is significantly
annoying to watch.

The results showed that the default DTM generated a
significant amount of skipped frames, and the duration of frame
skip instances was noticeably long. The sum of the frame
skipping duration was 7,491 ms on average during the two
minutes of video playback. However, both occurrence frequency
and severity of the skipped frames were significantly suppressed
by the TMP to the sum of 1,439 ms.

Unfortunately, even TMP could not totally remove frame
skipping, and some of the instances reached 100 ms. This was
because the thermal margin was not determined to be sufficiently
large for the experiment; therefore, the performance scale-up
decision by the QoS watchdog was offset by the cooling policy.

The severe performance degradation by the default DTM
was explained by its aggressive performance adjustment. The
video player started skipping frames below 1.4 GHz. However,
the clock speed easily fell below 1.4 GHz with the default
DTM, as shown in Fig. 1. On the other hand, TMP avoided
frame skipping in most cases because it created a more
suitable thermal environment that allowed the video player to
use all the processing power needed, which raised the
temperature without consequences.

Fig. 10. Temperature changes under different DTM schemes

Fig. 10 shows the time series of the system temperature

changes for both experimental configurations. The ambient
temperature was set to 25 °C. The first three thermal margins
created by TMP are labeled M1, M2, and M3 in Fig. 10 (b).
At M1, TMP decided to decrease the number of cores to three,
as shown in Fig. 11, which slowed down the temperature
increase. However, the temperature steadily rose to the alarm
state, and at M2, TMP lowered the clock speed by one step
instead of deactivating a core since there were six interactive
threads. At M3, TMP reduced the clock speed again by one
step, and the temperature fluctuated at around 107 °C after M3.

The system rarely reached the thermal ceiling with TMP,
while the default DTM frequently hit the thermal ceiling.
TMP also clearly reduced the amplitude of the temperature
change compared to the default DTM because of TMP’s
proactive reaction to the temperature change.

Although lowering the average temperature is not the goal
of TMP, it reduced the average operating temperature to some
extent. The default DTM scheme managed to keep the average
temperature for the given workloads at 108 ºC, with a total
sum of 7,491 ms of skipped video rendering. The average
temperature under TMP was 106.5 ºC, indicating a 1.8 %
reduction in heat accumulation.

Most importantly, TMP accumulated only 1,439 ms of
skipped video rendering, representing an 80.8 % improvement
in the QoS. The heat reduction average might be insignificant,
but the QoS improvement, which is the primary concern of
TMP, was substantial.

Fig. 11 shows the time series of the temperature change,
interactive thread processor utilization, clock frequency, and
number of active cores. The clock frequency stayed within the
1.3 to 1.6 GHz range. Because the temperature was steadily
maintained near the thermal ceiling due to the existence of
computing-intensive threads, the TMP continually tried to

N. Badano et al.: A Thermal Margin Preservation Scheme for Interactive Multimedia Consumer Electronics 59

lower the clock speed. However, because the processor
utilization of the interactive threads was also high, the QoS
watchdog maintained the clock frequency above 1.3 GHz,
which was a desirable level for the given workload.

Fig. 11. System status changes under TMP during the experiment

V. RELATED WORK
The thermal design power (TDP) constraint will be one of

the most important performance limiting issues when
designing new generation processors because even at the
constant frequency, a double per-generation core growth will
soon exceed TDP [7]. This means that innovative ways to deal
with the TDP constraint have to be investigated [3].

Brooks et al. [8] defined and investigated the major
components of the DTM schemes. Specifically, they explored
the trade-offs between several mechanisms for responding to
periods of thermal trauma, and investigated the effects of
hardware and software implementations. Skadron et al. [2]
also built a microarchitecture thermal model, and used it for
comparing several different techniques of the DTM, such as
DVFS, migrating computation to spare hardware units, and
combinations of fetch gating with DVFS. The cooling policy
decision heuristics of TMP can be refined by adopting the
diverse thermal management mechanisms considering their
characteristics.

Liu et al. [9] proposed a design-time model that analyses
workloads and creates task-to-voltage mappings for real-time
constraints. The mappings have a number of objectives:
energy optimization, thermal optimization, and thermal
constrained energy optimization. Scheduling is performed by
assigning the best possible mapping to a processor without
violating its current thermal and power constraint. Akbari et al.
[10] also proposed a dynamic task priority scaling for thermal
management that maps and schedules tasks on a multicore
processor reflecting their priorities to lower the system
temperature. The aim of these approaches are to reduce the
total amount of heat dissipation for a given workload, and is
orthogonal to that of TMP. They thus can be used together
with TMP to earn synergic benefit in terms of the QoS
protection in case of thermal crisis.

Preserving the QoS of multimedia applications has been an
important issue for the power management schemes because
the blind performance management may critically harm the
user experience. Kamat [11] proposed a framework that
multimedia applications and energy management module
collaborate with each other to extend the battery lifetime of
multimedia applications. This framework predicts the battery
charging patterns and uses that information for power
management. However, its goal is not to preserve the QoS of
them, on the contrary, it maximizes the battery lifetime by
sacrificing the QoS of them based on the prediction.

Hwang et al. [12] designed a hardware-supported power
management unit (PMU). The hardware-assisted PMU can
efficiently collect the information of I/O usage patterns of
applications. Based on the collected information, the PMU
carries out predictive power management. While the proposed
approach proactively reacts to the workload characteristics,
such information is only used for improvement of energy
efficiency, not for thermal management.

Srinivasan et al. [13] proposed a predictive DTM scheme,
which was designed for supporting multimedia applications.
The proposed predictive model is based on an algorithm that
profiles applications for an appropriate amount of frames to
check the maximum temperatures in all the structures of the
chip. Then applies micro-architectural adaptation to reduce
temperature for the given workload. This methodology
assumes an amount of thermal sensors per chip, which are
unavailable in embedded processors yet.

Donald et al. [14] explored novel techniques of the DTM
for multicore processors, and evaluated the techniques with
simulation. However, the target workloads were mainly the
computing-intensive and throughput-oriented ones.

Yi et al. [3] proposed an improved thermal modeling
technique that can be used to predict the chip temperature
more accurately and efficiently at design time. In addition,
they developed a heuristic algorithm to address the static
application mapping and scheduling problem based on the
proposed thermal model to control the operating temperature.

Chu et al. [15] developed an adaptive online thermal-aware
task scheduler for multicore processors. In the same manner as
TMP, it monitors certain system parameters to find a
thermally-efficient core to map a task. Different from TMP,
they assumed that each task would explicitly claim its service
level requirement.

Fisher et al. [16] explored how to adapt execution speed of
a multicore SoC for real-time tasks in order to cope with
thermal constraints. As a thermal model, they used Fourier’s
cooling model, which is used in most of the related literature
in one way or another.

VI. CONCLUSIONS
Due to the simultaneous strong demand for both high

performance and energy efficiency, the heterogeneous
multicore architecture is expected to be popularly used for
consumer electronics in the near future. However, because of

60 IEEE Transactions on Consumer Electronics, Vol. 62, No. 1, February 2016

the manufacturing costs and small design-form factors, the
cooling solution will unlikely match the large heat dissipation
from the high-performance cores in the heterogeneous
processors.

Although the current embedded systems provide the DTM
feature, the performance of the interactive applications will be
significantly affected in the thermal crisis because the
conventional DTM schemes adjust the performance level of
the entire system and thus blindly retard the execution of all
running threads to cool down the system.

This paper proposed the Thermal Margin Preservation
scheme, a novel DTM scheme for consumer electronics. TMP
differentiates the thermal ceiling of each thread according to
its characteristics. TMP automatically determines the threads
that affect the user experience, and prioritizes them in terms of
thermal management. By restricting the execution of the non-
prioritized threads, TMP maintains the thermal margin, and
the thermal margin helps the interactive threads to execute
without performance degradation.

The prototype implementation showed that the proposed
thermal management scheme dramatically suppressed the
occurrences of frame skipping during the video playback
while executing a long-term background application.

Although this paper proposed and implemented the concept
of differentiated thermal management depending on the thread
priority for consumer electronics, further research is required
to accurately estimate the thermal margin for a given
condition and to predict the temperature changes with less
overhead. With the aid of the emerging hardware technology,
diverse cooling policies, such as the migration of non-
prioritized threads to the energy-efficient cores while keeping
the prioritized threads in the high-performance cores, can be
additionally integrated into the proposed scheme.

REFERENCES
[1] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan,

“Variability in the execution of multimedia applications and implications
for architecture,” in Proc. International Symposium on Computer
Architecture, Göteborg, 2001, pp. 254–265.

[2] K. Skadron et al., “Temperature-aware microarchitecture: modeling and
implementation,” ACM Trans. Archit. Code Optimization, vol. 1, no. 1,
pp. 94–125, Mar. 2004.

[3] J. Yi et al., “An improved thermal model for static optimization of
application mapping and scheduling in multiprocessor system-on-chip,”
in Proc. IEEE Computer Society Annual Symposium on VLSI, Tampa,
2014, pp. 547–552.

[4] K. Flautner, and T. Mudge, “Vertigo: automatic performance-setting for
Linux,” in Proc. USENIX Symposium on Operating Systems Design and
Implementation, Boston, USA, 2002, pp. 105–116.

[5] V. Pallipadi, and A. Starikovskiy, “The ondemand governor: past,
present and future,” in Proc. Linux Symposium, 2006, vol. 2, pp. 223–
238.

[6] P. Greenhalgh, “Big.Little processing with ARM Cortex-A15 & Cortex-
A7,” ARM Inc., San Jose, CA, USA, Sep. 2011.

[7] W. Huang, K. Rajamani, M. R. Stan, and K. Skadron, “Scaling with
design constraints: predicting the future of big chips,” IEEE Micro, vol.
31, no. 4, pp. 16–29, Jul. 2011.

[8] D. Brooks, and M. Martonosi, “Dynamic thermal management for high-
performance microprocessors,” in Proc. International Symposium on
High-Performance Computer Architecture, Nuevo Leone, 2001, pp.
171–182.

[9] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, “Thermal vs
energy optimization for DVFS-enabled processors in embedded
systems,” in Proc. International Symposium on Quality Electronic
Design, San Jose, 2007, pp.204–209.

[10] A. Akbari, S. P. Mozafari, H. Noori, and F. Mehdipour, “Dynamic task
priority scaling for thermal management of multi-core processors with
heavy workload,” in Proc. Great Lakes Symposium on VLSI, Pittsburgh,
Pennsylvania, USA, 2015, pp. 373–378.

[11] S. P. Kamat, “Energy management architecture for multimedia
applications in battery powered devices,” IEEE Trans. Consumer
Electron., vol.55, no.2, pp.763–767, May 2009.

[12] Y. Hwang, S. Ku, and K. Chung, “A predictive dynamic power
management technique for embedded mobile devices,” IEEE Trans.
Consumer Electron., vol.56, no.2, pp.713–719, May 2010.

[13] J. Srinivasan, and S. V. Adve, “Predictive dynamic thermal management
for multimedia applications,” in Proc. 17th ACM/SIGARCH
International Conference on Supercomputing, San Francisco, 2003, pp.
109–120.

[14] J. Donald, and M. Martonosi, “Techniques for multicore thermal
management: classification and new exploration,” ACM SIGARCH
Comput. Archit. News, vol. 34, no. 2, pp. 78–88, May 2006.

[15] H. H. Chu, Y. C. Kao, and Y. S. Chen, “Adaptive thermal-aware task
scheduling for multi-core systems,” J. Syst. Softw, vol. 99, pp. 155–174,
Jan. 2015.

[16] N. Fisher, J. J. Chen, S. Wang, and L. Thiele, “Thermal-aware global
real-time scheduling and analysis on multicore systems,” in Proc. IEEE
Real-Time and Embedded Technology and Applications Symposium, San
Francisco, 2009, pp. 547–560.

BIOGRAPHIES

Nicolás Badano received his BS degree in systems
engineering from ORT University, Uruguay in 2011, and
MS degree in computer science from Sungkyunkwan
University, Korea in 2015. He is currently working at the
iOS development team of JPMorgan Chase & Co.,
Glasgow, UK. His research interests are embedded
systems and thermal-aware scheduling.

Youngjoo Woo earned her B.S. degree from Inha
University in 2009, and received M.S. degree in electrical
and computer engineering at Ulsan National Institute of
Science and Technology (UNIST) in 2012. Currently she
is a Ph.D. student at Sungkyunkwan University, Korea.
Her research interests are embedded systems, power-
aware computing, virtualization and cloud computing.

Jeaho Hwang obtained his BS degree in computer
science from Korea Advanced Institute of Science and
Technology (KAIST) in 2007, and MS degree in
computer science from KAIST in 2009. He is currently a
researcher at RTST Co., Ltd. His current research
interests include operating systems, system reliability,
virtualization, and embedded systems.

Euiseong Seo received his BS, MS, and PhD degree in
computer science from KAIST in 2000, 2002, and 2007,
respectively. He is currently an assistant professor in
College of ICE at Sungkyunkwan University, Korea.
Before joining Sungkyunkwan University in 2012, he had
been an assistant professor at UNIST, Korea from 2009
to 2012, and a research associate at the Pennsylvania

State University from 2007 to 2009. His research interests comprise power-
aware computing, real-time systems, embedded systems, and virtualization.

N. Badano et al.: A Thermal Margin Preservation Scheme for Interactive Multimedia Consumer Electronics 61

