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Abstract — The heterogeneous multicore architecture is 
considered a cogent solution to match the performance 
demand for processing the next-generation media formats 
such as ultra-high definition, 3D or holography. However, the 
performance cores in a heterogeneous multicore processor 
dissipate a huge amount of heat. To cope with the thermal risk, 
most modern embedded processors provide the dynamic 
thermal management (DTM) feature that forcefully reduces 
the clock speed of the processors. Although this simple 
approach can maintain the system temperature below the 
thermal trip point, the performance of prioritized multimedia 
or interactive applications can be significantly harmed by the 
reduced performance even when the thermal crisis is caused 
mostly by the non-prioritized applications. This paper 
proposes a novel DTM scheme called Thermal Margin 
Preservation (TMP). TMP differentiates the thermal trip point 
for the prioritized applications from that for the non-
prioritized ones, and thus forms the thermal margin, which is 
the temperature gap between the two trip points. Under the 
proposed scheme, the prioritized applications can run without 
any disturbance in the thermal margin by sacrificing the 
performance only of the non-prioritized applications. The 
evaluation shows that the proposed scheme significantly 
reduces the quality-of-service degradation for video playback 
under high temperature conditions1. 
 

Index Terms — Dynamic thermal management, Temperature, 
Thermal model, Heterogeneous multicore 

I. INTRODUCTION 
The next-generation multimedia formats, such as 3D, ultra-

high-definition, or holography videos, demand extremely high 
performance to process. Additionally, the number of third-
party applications, often demanding significant performance, 
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is rapidly increasing. At the same time, the energy efficiency 
and power consumption issues are growing in importance. 

The heterogeneous multicore architecture, which integrates 
high-performance cores and energy-efficient cores on the 
same die, is considered a promising solution to break through 
the aforementioned antithetical requirements for the 
embedded processors of the consumer electronics. 

The high-performance cores in a heterogeneous multicore 
processor usually adopt out-of-order architecture, which 
consumes a significantly larger amount of power than the 
normal embedded processors for the sake of high performance. 
Consequently, the long-term operation of the high-
performance cores will dissipate a huge amount of heat, and 
the accumulated heat will bring the thermal crisis to the 
system. 

However, in contrast to PCs or server systems, which can 
easily accommodate large heat sinks or multiple fans, the heat 
dissipation capacity of the thermal solutions used in consumer 
electronic devices is marginal due to the strict limitations of 
both design-form factors and manufacturing costs. As a result, 
thermal management is an important issue for the consumer 
electronics that adopt the heterogeneous multicore processors. 

To overcome the thermal issue, most modern embedded 
processors are equipped with dynamic thermal management 
(DTM) schemes that lower the clock speed via dynamic 
voltage and frequency scaling (DVFS) when the system 
temperature rises above the predefined thermal trip point. This 
simple and straightforward approach easily controls the 
system temperature to prevent it from exceeding the thermal 
trip point. However, the conventional DTM scheme frequently 
fails to preserve the quality of services (QoS) of interactive or 
multimedia applications. 

The workloads with timeliness requirements, such as 
multimedia players or games, are very dynamic when it comes 
to CPU utilization [1]. They present sporadic CPU-intensive 
execution phases to maintain the target QoS; frame rate for the 
aforementioned examples. The conventional DTM scheme 
blindly slows down the execution of all processes, including 
the multimedia or interactive workloads [2], even when most 
of the accumulated heat is generated by long-term background 
tasks, such as cloud backup, virus scanning, and so on. 

To deal with the thermal risk of consumer electronics, this 
paper proposes Thermal Margin Preservation (TMP), a novel 
DTM scheme. TMP introduces the notion of a thermal margin 
that is defined as the difference between the software-defined 
thermal trip-point, which is enforced on non-prioritized 
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applications, and the highest temperature allowed by the 
hardware vendor. TMP allows the prioritized applications, 
such as foreground interactive ones, to execute without 
performance degradation, while the execution of non-
prioritized applications is controlled to reduce the system 
temperature when the current temperature lies in between 
these two thermal ceilings. Consequently, under the proposed 
scheme, the QoS of the prioritized applications will be barely 
affected by the thermal management most of the time. 

The proposed scheme was implemented on an embedded 
system, which is popularly used for smart phones and smart 
TVs. The prototype implementation was evaluated to measure 
the improvement in the QoS under high heat conditions. 

The remainder of this paper is organized as follows. Section 
II illustrates the motivation behind this research. Based on this 
motivation, Section III proposes the TMP scheme. Section IV 
describes the prototype implementation of the proposed 
scheme and presents the evaluation results. After the related 
work is introduced in Section V, Section VI concludes this 
study and discusses further research. 

II. MOTIVATION 
The existing DTM defines the appropriate reaction to the 

predefined temperature levels and carries it out according to 
the current temperature. This mechanism can be implemented 
in the firmware of the system-on-chip (SoC). However, in 
many cases, the DTM is implemented in the thermal driver 
module of the operating system (OS) kernel.  

The embedded system, which was used in this research, 
shows a typical DTM implementation. The thermal driver of 
the kernel for the embedded board defines three temperature 
levels and their corresponding cooling policies as described in 
TABLE I. 

 
TABLE I 

CONVENTIONAL THERMAL MANAGEMENT POLICIES 
Temperature (℃) Policy 

110 Clock speed scaling 
115 Notification 
120 Cut off CPU execution 

 
When the current temperature exceeds 110 ºC, the driver 

adjusts the clock speed according to the following rules inside 
a loop that samples the temperature every few milliseconds; i) 
If the current temperature is above the tripping point and the 
temperature is rising, then the driver reduces the CPU clock 
speed by one step. ii) If the current temperature is below the 
tripping point and the temperature is falling, then the driver 
increases the clock speed. 

At 115 ºC, the thermal management unit (TMU) notifies the 
OS kernel about the critical condition, and at 120 ºC, the TMU 
brutally shuts down the processor. Therefore, the OS should 
regard the clock speed scaling point as the practical upper 
bound of the system temperature. 

This mechanism is considered as a straightforward DVFS in 
reaction to the current temperature state. It is unaware of the 

nature of the executing threads, whether with timeliness 
requirement or not, and it does not care about how the user 
experience becomes affected by the decreased performance. 

To identify the thermal management scheme’s performance 
impact on the interactive applications, diverse system 
parameters, such as system temperature, clock frequency and 
processor utilization, were monitored during the execution of 
two applications, which are extensively described in Section 
IV and represent a prioritized foreground task and background 
tasks, respectively. 

The target system for this research was chosen to represent 
a typical heterogeneous multicore architecture, which is 
widely used by the consumer electronic devices as mentioned 
previously. In the target system, the four performance cores 
were grouped as the performance core cluster, while the other 
four energy-efficient cores were grouped as the energy-
efficient core cluster. Either the performance or the energy-
efficient cluster could be activated at any point in time, and 
the power management module would determine the cluster to 
operate. 

 
TABLE II 

AVAILABLE CLOCK FREQUENCIES OF TARGET SYSTEM 
Frequency (GHz) 

1.6 GHz, 1.5 GHz, 1.4 GHz, 1.3 GHz, 1.2 GHz,  
1.1 GHz, 1.0 GHz, 0.9 GHz, 0.8 GHz, 

 
As shown in TABLE II, the processor provides multiple 

clock levels to the power management module in the kernel. 
The maximum operating clock frequency of the energy 
efficient core cluster is 1.2 GHz, and that of the performance 
core cluster is 1.6 GHz. When the power management module 
adjusts the clock frequency to a value higher than 1.2 GHz, 
the performance core cluster will be activated, whereas the 
energy-efficient core cluster will run. For example, when the 
power management module raises the target operating clock 
frequency to 1.3 GHz from 1.2 GHz, the cores in the 
performance core cluster will exit from the sleep state and run 
at 1.3 GHz while the cores in the energy-efficient core cluster, 
which operated at 1.2 GHz, will instead enter the sleep state.  

 

 
Fig. 1. Thermal management impact on the application execution 
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As Fig. 1 shows, it was common for the clock frequency to 
drop by five or more steps due to the thermal crisis. This 
aggressive downscaling will translate into the saturation of the 
total processor utilization. Even when the processor utilization 
saturated and the prioritized tasks were not given sufficient 
processor resource, the background tasks consumed significant 
amounts of the processor resource, as shown in Fig. 1. 

Interactive or multimedia applications, such as games, web 
browsers, and multimedia file players, are very unpredictable 
in terms of the performance demand at any given time partly 
because they largely depend on human interaction and input 
data. Therefore, interactive workloads have sporadic 
execution phases that require high processing power, which is 
called the high-performance burst. 

 

 
Fig. 2. Notion of thermal margin 

 
If the interactive tasks were the primary source of the 

thermal crisis, it would be a reasonable and unavoidable 
solution to retard the execution of them. However, in many 
cases, the high temperature results from the heat accumulation 
caused by executing the long-term background tasks. In such 
a situation, the high-performance burst of a prioritized task 
may become the small but concluding contributor to the user-
perceivable QoS degradation, as shown in the problem 
scenario of Fig. 2. 

Obviously, it would be desirable that the QoS of the 
prioritized tasks be protected from performance downscaling 
due to the heat dissipated by the non-prioritized tasks. This 
would be achievable if the DTM scheme could predict the 
increase in temperature contributed by the sporadic activation 
of prioritized applications and could maintain the system 
temperature below a certain threshold, which would be 
determined based on the prediction as shown in the desired 
scenario of Fig. 2. 

III. DESIGN OF THERMAL MARGIN SCHEME 
The design objective of the TMP scheme is to preserve the 

thermal margin so that the temperature does not hit the 
thermal trip point even when the high-performance bursts of 
prioritized tasks occur. 

In contrast to the conventional DTM mechanisms, which 
reactively respond to the current temperature, TMP employs a 
proactive approach. Therefore, TMP can be used together 
with the conventional DTM. In this case, the conventional 
DTM, as a safeguard mechanism, will respond to catastrophic 
situations, where the temperature rises above the hardware-
defined thermal trip point, by abruptly adjusting the clock 
frequency. 

Fig. 3 shows the basic workflow of the TMP scheme. A 
thermal model is required to predict how high the temperature 
will rise from the current temperature, caused by the heat 
dissipated by the high-performance bursts of the prioritized 
tasks. The constructed model will be used to determine 
whether the system is in a safe state in terms of thermal 
management. When the system is determined to be in a 
dangerous condition, TMP restricts the execution of non-
prioritized or non-interactive threads, which do not affect the 
user experience. Therefore, TMP includes the technique that 
identifies the interactive threads out of all existing threads in 
the system. Finally, TMP provides the cooling policies and 
selects one of them according to the situation so that it can 
control the system temperature while preserving the 
performance of prioritized applications. 

 

 
Fig. 3. TMP system overview 

 
The following subsections present detailed descriptions of 

the introduced components of TMP. 

A. Thermal model 
One of the main contributions of TMP is its predictive 

nature. What enables TMP to predict the temperature change 
is a thermal trend model of the system-on-chip (SoC). A 
thermal model is fundamentally a temperature change curve in 
the function of time, depending on various factors, including 
the processor load, clock speed, number of active cores, 
processor temperature, and ambient temperature. With this 
curve, TMP is able to predict what the temperature value will 
be in the future. 

The thermal model is built by the model builder process, 
and the model should be constructed during the first boot and 
any system reconfiguration. The model builder collects the 
required data to construct the model while performing a series 
of stress tests. During the test runs, the model builder proceeds 
to execute stress tests under all possible core configurations. 
The model builder records the temperature readings in the 
function of time and deduces the temperature curve for a 
given core configuration depending on the time change. 

The on-chip temperature sensors may have an uncertainty 
of several degrees. However, the model is not for estimating 
the absolute temperature, but for predicting the relative 
temperature distance from the thermal ceiling, which is also 
determined by the on-chip temperature sensor. In addition, the 
model is built from the large set of collected temperature data. 
Consequently, the inaccuracy of the temperature sensors 
trivially influences the effectiveness of the model. 
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The ambient temperature affects how quickly a system 
dissipates produced heat. Therefore, it determines the 
sustaining temperature and speed of the temperature change of 
the system. While most of the modern embedded processors 
are equipped with processor temperature sensors, they are 
rarely furnished with ambient temperature sensors. Therefore, 
the temperature model indirectly infers the ambient 
temperature from the test run results. Thus, if the ambient 
temperature changes dramatically, the model should be built 
again. However, the observation showed that minor changes, 
such as 10 ºC, of the ambient temperature negligibly impacted 
the accuracy of the model. 

The model built with this approach showed the R2 value, 
which is a measure of how well the model fits the observed 
data, of 0.998 indicating the high accuracy of the curves. 
Similar approaches or observations were introduced by a 
number of existing research results [2],[3]. 

TMP predicts the estimated time of arrival (ETA) at the 
thermal trip point in the current core configuration based on 
the built model. To reduce the overhead for the kernel when 
predicting the ETA, TMP creates the ETA tables based on the 
thermal model and stores them inside the kernel. Because the 
temperature granularity is 1-degree Celsius, the tables only 
took a few KB for the experimental system. 

Each of the ETA tables represents a thermal trend curve for 
a specific core configuration; for example, four high-
performance cores running at 1.5 GHz. An entry in a table is 
indexed by the current temperature, and holds the calculated 
ETA at the thermal ceiling. 

B. Interactive thread identification 
An interactive thread is defined as a thread that affects the 

user experience. A typical stimulus-reaction cycle of an 
application consists of multiple interactive threads working 
collaboratively, and this chain of interactive threads must 
finish the cycle within the human perception threshold, 
usually 50 ms [4]. Therefore, it is essential that TMP be aware 
of which threads are prioritized ones. 

TMP detects interactive threads, and puts them into the 
interactive thread group, as follows. 

First, a user input, such as a screen touch or a button press, 
is detected via the input framework of the platform. The 
thread that is responsible for handling this input event will be 
put into the interactive thread group. Then, the inter-process 
communication (IPC) mechanisms will be monitored for IPCs 
between any thread belonging to the interactive thread group 
and any other thread that is not in this group. When a 
communication is detected, TMP flags the non-interactive 
counterpart as an interactive one and puts it into the 
interactive thread group. 

The end result is a set of threads whose members at a given 
moment are directly or indirectly responsible for the user 
experience. TMP treats the threads in the interactive groups as 
prioritized threads. 

C. Scheduling Dynamics 
TMP monitors the processor utilization contributed only by 

the interactive threads, number of active cores, clock frequency, 
and current processor temperature at every 10 ms interval to 
determine the current ETA at the thermal trip point, as well as 
determines the appropriate cooling policy. The 10 ms monitoring 
interval is also used by the ondemand governor [5], which is 
used as the default power management module of the Linux 
kernel, and has been verified to incur insignificant overhead. 

The TMP mechanism defines three thermal states as shown 
in Fig. 4, in which the system will be at any given time. The 
basic descriptions of the states are as follows:  
9 Safe state: no thermal crisis, proceed at full capacity. 
9 Alarm state: thermal crisis ahead, take preventive action. 
9 Danger state: ongoing thermal crisis, assess the situation 

and take further action if necessary. 
 

 
Fig. 4. Thermal state diagram 

 
While the system is in the safe state, TMP regularly checks the 

temperature changes. If the temperature is rising, then TMP 
consults the thermal model about whether the ETA is larger than 
the thermal margin, which is the sum of the recorded longest burst 
cycle of each thread group. 

If TMP detects that the ETA at the trip point in the current core 
configuration is shorter than the thermal margin, then the system 
enters the alarm state. The alarm state is a transitional state in which 
the system applies a new cooling policy and moves to the danger 
state. An appropriate cooling policy to reverse or relieve the 
temperature change may differ, depending on the circumstances. 
Section III.C discusses the details of the cooling policies. 

Once a cooling policy has been applied TMP will cross over to 
the danger state. At this state, TMP will assess the impact of the 
cooling policy applied in the alarm state at every monitoring 
interval. Since the cooling policy changed the core configuration, 
TMP selects the appropriate ETA table reflecting the current core 
configuration. 

There are four possible scenarios for the monitored system status 
in the danger state as shown in Fig. 5. 
9 S1) The temperature is still ascending, and the ETA is shorter 

than the determined thermal margin. 
9 S2) The temperature is still ascending, but the ETA is longer 

than the determined thermal margin. 
9 S3) The temperature is descending, but the ETA at the 

maximum performance level is shorter than the 
determined thermal margin. 

9 S4) The temperature is descending, and the ETA is longer 
than the determined thermal margin even at the maximum 
performance level. 
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Fig. 5. Four possible scenarios in the danger state 

 
Under S1, the current cooling policy is clearly insufficient 

to control the temperature, and eventually, the system will hit 
the thermal ceiling. Consequently, TMP pulls back the system 
to the alarm state, applies a more aggressive cooling policy, 
and pushes the system into the danger state again. 

TMP maintains the danger state under S2 and S3 because 
unleashing the performance will likely threaten the system’s 
thermal stability and harm the QoS of the prioritized 
applications. However, because the temperature is well 
controlled with the current cooling policy under S2 and S3, 
TMP keeps monitoring and does not apply any further action 
to cool down the system more aggressively. 

Under S4, the source of the heat may have gone, or at least, 
the risk has been significantly reduced by the current cooling 
policy. To improve the performance of the non-interactive 
threads, TMP reverts the system to the safe state so that the 
system can function at its maximum performance level. 

D. Cooling Policy 
 

 
Fig. 6. Inputs and outputs of cooling policy decision heuristics 

 
Fig. 6 shows an overview of the cooling decision heuristic’s 

inputs and outputs. It will take the system state values profiled 
by TMP in a data sampling instance, as explained earlier, 
apply the decision heuristics to choose an appropriate cooling 
policy, and create a new core configuration suitable for the 
current circumstances according to the chosen policy. 

The leakage power consumption significantly contributes to 
the overall heat dissipation; for example, approximately 35% 
in the target system. However, the leakage power is barely 
controllable. Therefore, cooling down is mostly enforced by 
regulating the dynamic power consumption. 

There are two alternative policies to cool down the system 
temperature; shrinking the number of active cores and 
decreasing the clock speed. Although both approaches will 
significantly reduce the heat dissipation, reducing the clock 
speed will retard the execution of all threads, while shrinking 

the number of active cores will deprive low priority threads of 
the chances to be scheduled. 

Before a cooling policy is applied, the scheduling priorities 
of non-prioritized threads are adjusted to the lowest level and 
those of prioritized ones to the highest level so that the non-
prioritized threads yield the processor resource to the 
prioritized threads if possible. 

The first heuristic of TMP is to shrink the number of active 
cores because the execution time of prioritized threads will 
less likely change in comparison to the other option. It is 
technically challenging to determine the sweet spot of the 
number of active cores that will safely maintain the system 
temperature while minimizing the impact on the execution 
time. To simplify this problem, TMP turns off cores one by 
one until the number of interactive threads becomes greater 
than or equal to twice the amount of active cores. The 
rationale behind this is that having less than two threads per 
core will not take advantage of the super-scalar, out-of-order 
and simultaneous multi-threading (SMT) capabilities of 
modern processor architecture, while more than two threads 
per core will possibly generate significant resource contention 
within the core. However, the adequate number of threads per-
core may differ depending on the workload characteristics and 
the micro-architecture of the processor. 

When the number of active cores becomes equal to twice 
the number of interactive threads, the second heuristic, which 
lowers the clock speed by one step, is applied. 

However, if the processor utilization contributed by the 
interactive threads rises above a predefined threshold (for 
example, 70 %) TMP will neither decrease the clock speed 
nor reduce the number of active cores. TMP will also maintain 
the current core configuration because the saturated processor 
utilization will result in the delayed response of interactive 
applications. 

It is noteworthy that these heuristics are straightforward and 
have a lot of room for improvement, not only in the 
algorithms but also in using the emerging hardware 
capabilities that novel architecture provides. For example, the 
embedded system used in this research can activate either the 
energy-efficient core cluster or high-performance core cluster, 
not both at the same time due to the difficulties in the cache 
coherence protection between both core clusters. However, 
the cutting edge heterogeneous multicore architecture 
overcame this limitation and can simultaneously operate both 
core clusters [6]. With this technology, TMP may migrate 
non-prioritized threads to the energy-efficient cores while 
keeping the prioritized ones in the performance cores to cool 
down the system. 

E. QoS Watchdog 
So far, the tactics to create the thermal margin and to 

preserve the performance of the prioritized applications have 
been described. Of course, in a real situation, a thermal-
efficient core configuration will not be sustainable indefinitely. 
At some point in time, the workload will require an increase in 
processing power. In other words, as previously defined, 
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sporadic high-performance bursts are expected to happen at 
any moment without any warning. Therefore, TMP also needs 
a mechanism to detect these high-performance bursts and 
change the core configurations to satisfy the newly increased 
processing demand. This is where the QoS watchdog comes 
into play. 

The QoS watchdog is the last but not the least important 
component of TMP. As illustrated in Fig. 7, the watchdog 
component regularly samples the processor utilization of 
interactive threads. If a predefined threshold is reached, then 
TMP will proceed to increase the processor performance by 
one step in an inverse way of the heuristic algorithm to 
determine the cooling policy. The processor utilization 
threshold of the QoS watchdog may differ from the one used 
for the cooling policy determination algorithm, and it is 
recommended to be higher than that. In the evaluation, the 
threshold of the QoS watchdog was set to 80 %. 

 

 
Fig. 7. High-performance bursts detection by QoS watchdog 

 
At this point, TMP has two components fighting for 

antagonistic interest. On one hand, the cooling decision 
component pulls to reduce the processor performance; on the 
other hand, the QoS watchdog pushes to increase the 
processor performance. These two forces will work together 
to create the desired equilibrium when it is possible. The state 
diagram shown in Fig. 8 explains how both antagonistic 
components work together simultaneously. 

 

 
Fig. 8. Dynamics of performance level determination 

 

F. Limitations 
Determining the optimal size of the thermal margin would 

be desirable for the ideal operation of TMP because a large 
one would degrade the performance of the background 
workload, and a small one could lead to a thermal crisis. 
Finding the optimal size of the thermal margin would indicate 
the mechanism’s upfront knowledge of the lengths of the 
high-performance bursts for a given interactive workload, 
which would not be possible. Because of this point, the 
current implementation of TMP tries to build the largest 

margin possible by summing the longest burst cycle of each 
interactive thread group. Naturally, this approach adversely 
impacts the performance of the background workloads. 

Nevertheless, this issue can be resolved by an in-depth 
analysis of the workload behavior. For example, TMP can 
apply a statistical approach to estimate the acceptable level of 
thermal margin for a given application. Moreover, to deduce 
the optimal thermal margin, TMP may accurately simulate 
what will happen to the overall processor burst cycle when 
multiple interactive thread groups are competing for the 
processor resource. The research on the determination of the 
thermal margin is beyond the scope of this paper, which 
proposes and realizes the concept of the differentiated thermal 
management based on the workload characteristics, and is left 
as a future research theme. 

IV. EVALUATION 
In order to evaluate the effectiveness of TMP in 

maintaining user experiences for interactive applications, a 
comparative experiment was conducted. TMP with the out-of-
the-box DTM was compared with the power management 
mechanism included in the Linux distribution built for the 
target embedded system. 

For the workload, a scenario that provided sufficient levels 
of stress to the processor was emulated in order to reach high 
temperature. In addition, a possible common use-case for 
modern consumer electronic devices, such as smart phones, 
smart TVs, or tablets, was represented in the scenario. 

The workload consisted of two applications running 
simultaneously, a background application and a foreground 
one, as described in TABLE III. The background task 
emulated a long-term computing-intensive application, such as 
background file encryption, pattern matching for malware 
detection, scanning for memory deduplication, 3D data 
processing, multimedia file encoding, and so on. The types of 
such background tasks are expected to increase as the 
functionalities and features of consumer electronics expand. 
Three computation workload instances were created and 
executed to stress all four cores. 

 
TABLE III 

DESCRIPTION OF EXPERIMENTAL WORKLOADS 
Workload Type Description 

Video player Interactive Video playback of 1080p/29.97 fps files 
Computation Background SPEC2006 benchmarks 

 
As a representative example of a foreground multimedia 

workload, a video player was chosen because it was easy to 
quantitatively measure the QoS degradation, which could be 
indicated by frame skipping. On the other hand, quantitatively 
measuring the QoS of other interactive applications, such as 
games or web browsers, would be technically difficult 
although the experiments with diverse video games clearly 
showed sensory QoS improvement by applying TMP. 

Six threads were forked and executed for the video player, 
and the processing demand for the video playback 
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significantly fluctuated depending on the characteristics of the 
frames to be rendered. For example, rendering fast-moving 
scenes required higher performance than rendering still scenes. 
Therefore, the high-performance bursts sporadically appeared, 
and the duration of them would be difficult to predict, as 
mentioned. 

The mixture of the workloads was executed on the target 
system introduced in Section II. To make the comparison, the 
workloads were first run on the unmodified Linux kernel, 
which included the ondemand power management module and 
the default DTM module, which was explained in Section II. 
Then, the workloads were run on the Linux kernel with TMP. 
The ondemand power management module was disabled to 
prevent interference with TMP. The workloads were executed 
for two minutes, and the series of experiments was repeated 
several times after sufficiently cooling down the board. The 
time series graphs shown in this paper are select from the 
repetitions to show the representative characteristics. 

 

 
Fig. 9. Time series of frame skip duration under different DTM schemes 

 

To quantitatively measure the user experience degradation, 
debug data were collected from the video player. The video 
rendering software would skip frames of footage when the 
processing power was unavailable. This would translate into a 
slow frame rate and bad quality video, both directly related to the 
user experience. The debug data would show the amount of 
milliseconds of a video frame skipped by the video renderer at 
any given moment.  

Fig. 9 shows the time series of the duration of skipped frames 
during the first 90 s of the experiment. Each vertical line 
represents the length of time without rendering the frames on 
time. A frame skip instance longer than 50 ms is clearly 
noticeable, and the one longer than 100 ms is significantly 
annoying to watch. 

The results showed that the default DTM generated a 
significant amount of skipped frames, and the duration of frame 
skip instances was noticeably long. The sum of the frame 
skipping duration was 7,491 ms on average during the two 
minutes of video playback. However, both occurrence frequency 
and severity of the skipped frames were significantly suppressed 
by the TMP to the sum of 1,439 ms. 

Unfortunately, even TMP could not totally remove frame 
skipping, and some of the instances reached 100 ms. This was 
because the thermal margin was not determined to be sufficiently 
large for the experiment; therefore, the performance scale-up 
decision by the QoS watchdog was offset by the cooling policy. 

The severe performance degradation by the default DTM 
was explained by its aggressive performance adjustment. The 
video player started skipping frames below 1.4 GHz. However, 
the clock speed easily fell below 1.4 GHz with the default 
DTM, as shown in Fig. 1. On the other hand, TMP avoided 
frame skipping in most cases because it created a more 
suitable thermal environment that allowed the video player to 
use all the processing power needed, which raised the 
temperature without consequences. 
 

 
Fig. 10. Temperature changes under different DTM schemes 

 
Fig. 10 shows the time series of the system temperature 

changes for both experimental configurations. The ambient 
temperature was set to 25 °C. The first three thermal margins 
created by TMP are labeled M1, M2, and M3 in Fig. 10 (b). 
At M1, TMP decided to decrease the number of cores to three, 
as shown in Fig. 11, which slowed down the temperature 
increase. However, the temperature steadily rose to the alarm 
state, and at M2, TMP lowered the clock speed by one step 
instead of deactivating a core since there were six interactive 
threads. At M3, TMP reduced the clock speed again by one 
step, and the temperature fluctuated at around 107 °C after M3.  

The system rarely reached the thermal ceiling with TMP, 
while the default DTM frequently hit the thermal ceiling. 
TMP also clearly reduced the amplitude of the temperature 
change compared to the default DTM because of TMP’s 
proactive reaction to the temperature change. 

Although lowering the average temperature is not the goal 
of TMP, it reduced the average operating temperature to some 
extent. The default DTM scheme managed to keep the average 
temperature for the given workloads at 108 ºC, with a total 
sum of 7,491 ms of skipped video rendering. The average 
temperature under TMP was 106.5 ºC, indicating a 1.8 % 
reduction in heat accumulation.  

Most importantly, TMP accumulated only 1,439 ms of 
skipped video rendering, representing an 80.8 % improvement 
in the QoS. The heat reduction average might be insignificant, 
but the QoS improvement, which is the primary concern of 
TMP, was substantial. 

Fig. 11 shows the time series of the temperature change, 
interactive thread processor utilization, clock frequency, and 
number of active cores. The clock frequency stayed within the 
1.3 to 1.6 GHz range. Because the temperature was steadily 
maintained near the thermal ceiling due to the existence of 
computing-intensive threads, the TMP continually tried to 
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lower the clock speed. However, because the processor 
utilization of the interactive threads was also high, the QoS 
watchdog maintained the clock frequency above 1.3 GHz, 
which was a desirable level for the given workload. 

 

 
Fig. 11. System status changes under TMP during the experiment 

 

V. RELATED WORK 
The thermal design power (TDP) constraint will be one of 

the most important performance limiting issues when 
designing new generation processors because even at the 
constant frequency, a double per-generation core growth will 
soon exceed TDP [7]. This means that innovative ways to deal 
with the TDP constraint have to be investigated [3]. 

Brooks et al. [8] defined and investigated the major 
components of the DTM schemes. Specifically, they explored 
the trade-offs between several mechanisms for responding to 
periods of thermal trauma, and investigated the effects of 
hardware and software implementations. Skadron et al. [2] 
also built a microarchitecture thermal model, and used it for 
comparing several different techniques of the DTM, such as 
DVFS, migrating computation to spare hardware units, and 
combinations of fetch gating with DVFS. The cooling policy 
decision heuristics of TMP can be refined by adopting the 
diverse thermal management mechanisms considering their 
characteristics. 

Liu et al. [9] proposed a design-time model that analyses 
workloads and creates task-to-voltage mappings for real-time 
constraints. The mappings have a number of objectives: 
energy optimization, thermal optimization, and thermal 
constrained energy optimization. Scheduling is performed by 
assigning the best possible mapping to a processor without 
violating its current thermal and power constraint. Akbari et al. 
[10] also proposed a dynamic task priority scaling for thermal 
management that maps and schedules tasks on a multicore 
processor reflecting their priorities to lower the system 
temperature. The aim of these approaches are to reduce the 
total amount of heat dissipation for a given workload, and is 
orthogonal to that of TMP. They thus can be used together 
with TMP to earn synergic benefit in terms of the QoS 
protection in case of thermal crisis. 

Preserving the QoS of multimedia applications has been an 
important issue for the power management schemes because 
the blind performance management may critically harm the 
user experience. Kamat [11] proposed a framework that 
multimedia applications and energy management module 
collaborate with each other to extend the battery lifetime of 
multimedia applications. This framework predicts the battery 
charging patterns and uses that information for power 
management. However, its goal is not to preserve the QoS of 
them, on the contrary, it maximizes the battery lifetime by 
sacrificing the QoS of them based on the prediction. 

Hwang et al. [12] designed a hardware-supported power 
management unit (PMU). The hardware-assisted PMU can 
efficiently collect the information of I/O usage patterns of 
applications. Based on the collected information, the PMU 
carries out predictive power management. While the proposed 
approach proactively reacts to the workload characteristics, 
such information is only used for improvement of energy 
efficiency, not for thermal management. 

Srinivasan et al. [13] proposed a predictive DTM scheme, 
which was designed for supporting multimedia applications. 
The proposed predictive model is based on an algorithm that 
profiles applications for an appropriate amount of frames to 
check the maximum temperatures in all the structures of the 
chip. Then applies micro-architectural adaptation to reduce 
temperature for the given workload. This methodology 
assumes an amount of thermal sensors per chip, which are 
unavailable in embedded processors yet. 

Donald et al. [14] explored novel techniques of the DTM 
for multicore processors, and evaluated the techniques with 
simulation. However, the target workloads were mainly the 
computing-intensive and throughput-oriented ones. 

Yi et al. [3] proposed an improved thermal modeling 
technique that can be used to predict the chip temperature 
more accurately and efficiently at design time. In addition, 
they developed a heuristic algorithm to address the static 
application mapping and scheduling problem based on the 
proposed thermal model to control the operating temperature. 

Chu et al. [15] developed an adaptive online thermal-aware 
task scheduler for multicore processors. In the same manner as 
TMP, it monitors certain system parameters to find a 
thermally-efficient core to map a task. Different from TMP, 
they assumed that each task would explicitly claim its service 
level requirement. 

Fisher et al. [16] explored how to adapt execution speed of 
a multicore SoC for real-time tasks in order to cope with 
thermal constraints. As a thermal model, they used Fourier’s 
cooling model, which is used in most of the related literature 
in one way or another. 

VI. CONCLUSIONS 
Due to the simultaneous strong demand for both high 

performance and energy efficiency, the heterogeneous 
multicore architecture is expected to be popularly used for 
consumer electronics in the near future. However, because of 
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the manufacturing costs and small design-form factors, the 
cooling solution will unlikely match the large heat dissipation 
from the high-performance cores in the heterogeneous 
processors. 

Although the current embedded systems provide the DTM 
feature, the performance of the interactive applications will be 
significantly affected in the thermal crisis because the 
conventional DTM schemes adjust the performance level of 
the entire system and thus blindly retard the execution of all 
running threads to cool down the system. 

This paper proposed the Thermal Margin Preservation 
scheme, a novel DTM scheme for consumer electronics. TMP 
differentiates the thermal ceiling of each thread according to 
its characteristics. TMP automatically determines the threads 
that affect the user experience, and prioritizes them in terms of 
thermal management. By restricting the execution of the non-
prioritized threads, TMP maintains the thermal margin, and 
the thermal margin helps the interactive threads to execute 
without performance degradation. 

The prototype implementation showed that the proposed 
thermal management scheme dramatically suppressed the 
occurrences of frame skipping during the video playback 
while executing a long-term background application. 

Although this paper proposed and implemented the concept 
of differentiated thermal management depending on the thread 
priority for consumer electronics, further research is required 
to accurately estimate the thermal margin for a given 
condition and to predict the temperature changes with less 
overhead. With the aid of the emerging hardware technology, 
diverse cooling policies, such as the migration of non-
prioritized threads to the energy-efficient cores while keeping 
the prioritized threads in the high-performance cores, can be 
additionally integrated into the proposed scheme. 
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