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Abstract

In this paper, we propose a rate control algorithm for intermittently connected networks (ICNs), which represent

a type of delay/disruption-tolerant network (DTN). ICNs have quite different characteristics from traditional TCP/IP

networks that lead to problems that do not occur in legacy networks, such as network partitioning, long and varying

delays, high loss probability, and asymmetric data transmission rates. To overcome these issues, many researches have

been carried out in recent years. The results have helped in achieving smooth communication between nodes, but there

are still some weak points. If many messages are input by the nodes in a network, these schemes do not work well.

For resolving this problem, we propose the novel sending rate control algorithm in an additive increase/multiplicative

decrease (AIMD) manner. To detect network congestion, we measure the receiving rate, the one-way delay, and the

number of copies. When measured receiving rate is increased, the congestion window (cwnd) is increased; otherwise,

cwnd is decreased. Simulations show that the proposed algorithm can adjust the sending rate of nodes to avoid

network congestion and provides fair share of the network for the nodes.

Index Terms

ICN, DTN, e2e congestion control, AIMD

I. INTRODUCTION

In traditional TCP/IP-based networks, such as the Internet, the main assumption is that there is always a fully

connected path between two end nodes for communication between them. In other words, at least one contemporary,

fully connected path between two end nodes should exist. Other key assumptions are that the maximum round-

trip time (RTT) is not unrestrained and the end-to-end packet loss probability is small. While these assumptions

are reasonable for the conventional Internet and some types of mobile network, such as mobile ad-hoc networks

(MANETs), other types of network may violate one or more of these assumptions. For example, in wildlife tracking

and habitat monitoring sensor networks, military mobile networks, terrestrial mobile networks, inter-planetary

networks, and vehicular ad-hoc networks (VANETs), a fully connected path between two end nodes cannnot be
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exist or RTT is too long. These networks are called intermittently connected networks (ICNs) [1] and represent a

type of delay/disruption-tolerant network (DTN) [2].

ICN has attracted substantial research attention due to their variety of applications in military, disaster discovery,

and emergency-response systems where the communication infrastructure may not exist [3]. Especially, ICN is

expected to be popularly used for Car2Car communication, mobile Internet and intelligent traffic system.

An ICN has quite different properties to a traditional TCP/IP-based network. Fig. 1 shows the characteristics of

ICNs. It may become unexpectedly partitioned or have no path between two nodes at times because of node mobility

or other unexpected reasons. In addition, these networks do not guarantee a fixed RTT, which is long and highly

variable. Since each packet is sent and received through different paths, it has asymmetric data transmission rates

and the end-to-end packet loss probability is high. Because of these different characteristics, the term Challenged

network is used and these networks may not be suitable for some services being used on the conventional TCP/IP

networks.

Many researches have focused on overcoming these ICN problems in recent years. One of the well-known research

groups is the Delay Tolerant Networking Research Group (DTNRG) 1. They proposed a DTN architecture and

many studies have investigated issues around the proposed network architecture. To achieve smooth communication

between nodes in ICN, the group proposed new routing protocols. Resource allocation is also a major research

topic because the computing resources such as memory, power and communication time, are critically limited in

ICN.

Control of the sending rate is one of the most important issues for improving network performance. Although

there is a very effective routing or resource allocation algorithm for ICNs, each nodes suffers in congestion when

it pours packet in a network too much. Floyd and Fall investigated the negative impacts from increasing traffic in

network without congestion control [4]. An increment of non-congestion-controlled traffic can cause unexpected

congestion collapses and extreme unfairness among flows. If the sending rate is controlled as in TCP, each flow

will be adapted to the bandwidth available for its path and, in turn, the network can avoid congestion collapse.

Lots of conventional protocols such as TCP and TFRC, which are currently being used for the Internet, incorporate

sending rate control schemes. Among these, TCP is the most popular transport layer protocol and variations such as

TCP/Reno, TCP/Vegas and TCP/Westwood have been introduced. Algorithms for TCP congestion control are based

on self-clocking by an ACK corresponding to a data packet. Since there is no end-to-end path in ICNs, definition of

the current available bandwidth is meaningless. In addition, a self-clocking mechanism may not function because

the packet delivery ratio is too low and the feedback delay is too high. Thus, algorithms that control the sending

rate are not directly applicable to ICNs.

Even though the end-to-end rate control is difficult to achieve in ICNs, some researchers have investigated

congestion control using other approaches. Almost all the approaches proposed yield congestion control in layer

3 [5], [6], [7], [8]. Theses network layer approaches are based on an epidemic routing protocol proposed by Vahdat

1http://www.dtnrg.org
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Fig. 1: Characteristics of ICNs

and Becker [9]. While these schemes control congestion in layer 3, they do not offer end-to-end congestion control.

To the best of our knowledge, there is currently no scheme that provides end-to-end congestion control.

In this paper, we propose a novel end-to-end rate control algorithm for ICNs. In our scheme, control of the sending

rate at each end node decreases network congestion collapses and, thus, the network utilization is maximized. To

control the sending rate, the message drop time is measured for each node. When a node forwards a message to

its destination via an one-hop path, receives a message, and drops a message in its buffer, it changes its congestion

window using the measured message drop time. To change the congestion window cwnd, we propose an additive

increase/multiplicative decrease (AIMD) algorithm. The one-way delay for self-clocking is also measured. The

one-way delay is calculated when a node forwards a message to its destination and then receives a message. When

a node sends a message, it will send the next message after the one-way delay measured.

The remainder of the paper is organized as follows. In Section II, we describe the background and related

research in brief. In Section III, we define the problem to be solved and our proposed end-to-end sending rate

control algorithm. We describe the performance of our algorithm and compare it with other related algorithms in

Section IV. We conclude our research in Section V.
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II. BACKGROUND AND RELATED WORK

As mentioned above, there has been much research into ICNs in recent years. Many new protocols and network

architectures have been developed to support more efficient communication in ICNs.

A major focus has been on methods to avoid congestion. Researchers in this field have mainly focused on

routing protocols to resolve this issue [5], [6], [7], [8]. Although routing protocol primarily affects the performance

of DTNs, however, modification of existing routing protocols usually induces costly changes in networking layers

of all participating nodes while applying a new congestion control requires modification of only two end nodes.

Seligman et al. proposed storage routing (SR) for congestion control and storage management in layer 3 based

on a store-and-forward routing approach [5], [7]. In their approach, the available storage is used to determine

the suitability of message sending. In addition, collections of messages are migrated from local storage to one or

more neighbors when congestion occurs and are then brought back when congestion weakens. Li et al. proposed a

congestion control strategy called N-Drop [8]. If a buffer is full and a new message needs to be stored, all messages

in the buffer are checked and messages with a forwarding number greater than N are erased. If there is no message

with a forwarding number greater than N , the last message in the buffer is erased. Burleigh et al. developed a

congestion control algorithm for DTNs [6]. Each router autonomously determines whether to accept a message or

not on the basis of local information such as average storage and the value and risk of accepting a message derived

from historical statistics. Other congestion control protocols have been proposed, but they are not significantly

different to those described above. Thompson et al. proposed an AIMD style congesion control for ICNs [10]. They

proposed a new replication management algorithm, which dynamically controls the number of replication limits

based on the network conditions. The proposed dynamic control algorithm is based on the AIMD appproach similar

to our approach. These protocols are very useful for avoiding congestion and can control the sending rate in layer

3. In other words, whereas they can avoid congestion collapses in a network, they cannot control the end-to-end

sending rate. This means that applications do not decide their sending rate to avoid congestion.

To observe the impact of the sending rate in ICNs, we performed simple simulations. We used 100 nodes that

communicate with each other over a map size of 3,000 m × 3,000 m according to a random waypoint mobility

model at a speed of 30 m/s. Simulations were executed over a time period of 10,000 s. The transmission range

and bandwidth were set to 50 m and 10 messages/s, respectively. A node buffer stores 50 messages and the drop

policy is drop-oldest. We used a simple epidemic protocol for routing. A simulation result is presented in Fig. 2.

It is evident that the message delivery ratio decreases as the sending rate increases. It is obvious that other routing

schemes for ICNs without congestion control schemes show similar behavior to that in Fig. 2.

There are many end-to-end congestion control protocols for traditional TCP/IP networks. One type of protocol con-

trols the sending rate for a node using heuristic AIMD methods, such as TCP/Tahoe, TCP/Reno and TCP/NewReno,

or equation-based methods, such as TFRC. This involves implicit feedback (ACK) or explicit feedback (ECN) for a

packet for reliable delivery and control of the sending rate. The approach guarantees reliable in-order delivery and

avoids congestion collapses in a network. The datagram congestion control protocol (DCCP) has some different
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Fig. 2: Delivery ratio as a function of the sending rate.

features to above protocols, but does not guarantee reliable in-order delivery and also needs feedback to control

the sending rate for a node.

For feedback to be useful, senders must receive feedback correctly and within a short time. Since there is fully

connected path between two end nodes and the propagation delay is low in traditional TCP/IP networks, congestion

control protocols based on feedback tend to perform well. ICNs, however, have quite different characteristics to

traditional TCP/IP networks. There may not be a fully connected path between two end nodes at times and the

propagation delay is significantly longer than the conventional networks, so feedback may not be received by senders

or feedback received may not be helpful for controlling the sending rate. Therefore, these protocols are not suitable

for ICNs.

In this paper, we propose a new end-to-end control protocol for the sending rate in an ICN in which each end

node decides its sending rate according to local information. This involves active measurement of the receiving

rate, one-way delay, and average number of copies. The congestion window size is also determined.

In addition to the end-to-end congestion control, there has been a lot of research effort on the application of ICN

or DTN to vehicular network [11], [3], [12].

In an energy-restricted DTN such as sensor networks, the operation time of the network is determined by the

energy consumption rate of the participant nodes. Therefore, reducing energy consumption for packet forwarding in
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such network is an important issue. Li et al. [11] formulated the optimization problem of opportunistic forwarding

with the constraint of energy consumed by the message delivery for both two-hop and epidemic forwarding. Based

on the solution of the optimization problem, they proposed a few forwarding policies and evaluated them in terms

of both transmission probability and energy consumption.

Niyato et al. [3] presented the optimisation formulation based on the constrained Markov decision process (CMDP)

to obtain an optimal decision for the mobile router on whether to accept packets from a traffic source. Also, they

proposed noncooperative game and optimisation formulations are presented for the cases when traffic sources have

a self-interest to maximise their own benefit and a global interest to maximise the total benefit of the network,

respectively.

Like Niyato et al., Zhu et al. [12] assumed that the participant nodes in DTN are selfish and some of them can

be malicious. To address this problem, they proposed a secure multilayer credit-based incentive scheme to stimulate

bundle forwarding cooperation among DTN nodes.

Since the proposed congestion control scheme in this paper can be generally applied to the existing DTN routing

protocol, we believe that our scheme can be used together with the existing routing or forwarding schemes depending

on the purpose and constraint conditions of the target network.

III. PROBLEM STATEMENT AND ALGORITHM

The goal of the proposed algorithm is to maximize network utilization while keeping a high delivery ratio. We

first define what is the problem to be solved and then propose a novel sending rate control algorithm for ICNs.

To control the sending rate, each node measures the receiving rate, one-way delay and average number of copies,

which are key items for detection of congestion. When the receiving rate increases, a node increases its cwnd;

conversely, its cwnd is decreased when the receiving rate decreases. At an interval corresponding to the one-way

delay, cwnd messages are sent. The rest of this section describes the approach in detail.

A. Problem Statement

In traditional network architectures, network congestion is defined as a state in which the amount of data flowed

into the network is larger than the designated capacity of the network. This causes a serious decrease in performance,

such as longer delays, packet losses and blocking of new connections. The same occurs in ICNs.

To define network congestion, we have to define the maximum network capacity in ICNs. Let inn and outn be

the sending and receiving rate of each node, respectively. Note that outn includes multiples copies of a message.

Fig. 3 depicts a example of the network model dealt in this paper. Each node is represented as a small black circle,

and has inn and outn. In(n) is the sum of inn and Out(n) is the sum of outn. When In(n) increases, Out(n)

also increases, but Out(n) decreases after network congestion occurs. Fig. 4 shows simulation results for Out(n).

Let Inmax be the maximum sending rate in an ICN. When In(n) < Inmax, Out(n) is smaller because there are

no packets to be received. When In(n) > Inmax, Out(n) is also smaller because packets are dropped in all nodes

before arriving at their destination.
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To avoid network congestion and guarantee fairness among nodes, each node has to adjust its sending rate

according to Inmax

n , where n is the number of sending nodes. Since it is hard for each node to know Inmax and

n, we suggest a heuristic algorithm for adjusting the sending rate. In the next section, we explain the proposed

algorithm in detail.

B. Measurement

To adjust the sending rate, each node measures three parameters: a) the receiving rate; b) the one-way delay;

and c) the number of multiple copies. To avoid starvation, communicating nodes exchange measured values and

recalculate their own parameters.

1) Receiving rate: We use the measured receiving rate to determine current network utilization. To measure the

receiving rate, we use the time sliding window (TSW) algorithm proposed by Clark and Fang [13]. When a message

is received, including multiple copies, or is sent to a destination, the receiving rate is updated. Algorithm 1 shows

the TSW algorithm used in the proposed scheme.

Algorithm 1 TSW algorithm

1: On message receipt or sending to a destination:

2: avg rate = (avg rate×win len)+1
win len+now−last arrival

3: last arrival = now

4:

5: win len : a constant

6: avg rate: estimated receiving rate for a node

7: now: current time
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Fig. 4: Simulation results for O(n).

2) One-way delay: If all nodes are synchronized with the global clock, time calculation is easy. However, time

synchronization in a distributed environment is difficult. Although time synchronization in ad hoc networks has

been widely studied, synchronization is more difficult in ICNs because the probability of sending packets for

synchronization is too low. In another time synchronization method, every node sets its time to a global clock using

GPS. This approach is also hard to deploy in ICNs because unnecessary overheads are required.

Time synchronization is not required for measurement of message delays. A message maintains two time variables,

the message insertion time and the message lifetime. When a node receives a copy of a message, it writes the current

time in the message insertion time field for that copy. When a node forwards a message to another node, it updates

the message lifetime field for that copy. Let the message lifetime and the message insertion time for an original

message be Tl and Ti, respectively, and let the current time be Tc. The message lifetime field for a copy is updated

as Tl + (Tc − Ti). Tc and Ti are local times in the same node, so this calculation is reasonable.

Fig. 5 presents an example showing the measurement of message times. A message is generated at node A at

local time Ta1. At Ta2, node A copies this message to node B, when the local time for node B is Tb1. The time

fields for a copy of this message are filled as Tb1 and Ta2 − Ta1. Time fields for the original message are not

updated. At Tb2, node B copies a message to node D, when the local time for node D is Td1. Time fields for the
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Fig. 5: Example showing the measurement of time variables.

copy in D are updated as Td1 and (Ta2−Ta1)+ (Tb2−Tb1). Finally, node A copies a message to node C at local

time Ta3. Time fields for the copy in C are written as Tc1, the local time for node C, and Ta3 − Ta1.

By maintaining these two time fields for a message, we can easily compute the one-way delay. When a message

is forwarded to its destination, the message lifetime for a copy at a destination is its one-way delay. For example,

if node D is the message destination in Fig. 5, the one-way delay is (Ta2 − Ta1) + (Tb2 − Tb1).

3) Average number of multiple copies: There are many copies of a message in ICNs. When a message appears,

copies of it are spread throughout the network. Thus, we measure the average number of copies.

A node maintains the number of receipts of a message (Ncopies) and the number of messages received messages

(Nmsg). On receiving a message, a node calculates the average number of multiple copies as

numcopies = Ncopies/Nmsg. (1)

C. Rate Control Scheme

AIMD is a very useful rate control algorithm when an available bandwidth is not exactly known. In terms

of AIMD-based TCP congestion control, Internet can be fully and fairly utilized. In ICN environments as well,
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Algorithm 2 Calculation of the new congestion window

Require: cwnd ≥ 0

1: On message receipt or sending to destinations

2: if avg rate > old avg rate then

3: cwnd+ = (1/num copies)

4: end if

5: if avg rate < old avg rate then

6: cwnd/ = 2

7: end if

8:

9: old avg rate = avg rate

an available end-to-end bandwidth is hardly estimated, and AIMD could be an effective solution for rate control

problem.

In the application of AIMD, feedback from the network is essential for congestion detection. If additional control

packets are used to notify congestion, an available bandwidth is wasted and the message delivery ratio can decrease.

To avoid this problem, in the proposed scheme, nodes detect network congestion implicitly by monitoring receiving

rate.

An increase in receiving rate indicates that the network still has an available capacity. Hence, a node increases

its cwnd. On the contrary, when the receiving rate decreases, a node decreases its cwnd because the network has

been already fully utilized.

1) Congestion window adaptation: As mentioned above, a node determines how much it sends using measured

values. The receiving rate is used as a signal for congestion and the average number of copies is increased

accordingly. Algorithm 2 is the AIMD algorithm used in the proposed scheme.

On message receipt or sending to destination, if the current receiving rate is greater than the previous one, the

network may be under-utilized, so cwnd is increased by 1/num copies to increase the sending rate. The increment

for cwnd is 1/num copies because the number of messages in a network increases with the average number of

copies. If the increment is greater than 1/num copies, the sending rate will rapidly increase and cause network

congestion.

If avg rate is less than the previous, cwnd is reduced by half because the network is congested. Other flows

can then increase their sending rate and fairness among nodes is guaranteed. Then the previous receiving rate is

set to the current receiving rate.

Theorem. The proposed rate control scheme makes sending rate of a node converge to Inmax

N

Proof: First, let us think of the case that two sending nodes(A, B) exist in the network. If we let Inmax as
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Fig. 6: An example of alternative self-clocking.

C, their sending rates increase up to (α, β) where α + β = C before packets are discarded by congestion. Here

we assume that both nodes continuously increase their sending rates. Hence, they can detect network congestion

simultaneously.

After detecting network congestion, both nodes decrease their sending rates by half (m2 , n
2 ), and again start to

increase them additively. If we denote κ1 as the amount of increased sending rate before the second congestion

occurs, sending rates increases up to (α2 + κ1, β2 + κ1). Since the sum of sending rates is equal to C, κ1 = α+β
4 .

At the detection of the second congestion, sending rates of both nodes fall by half again (α4 + κ1

2 , β
4 + κ1

2 ),

and then increase additively up to (α4 + κ1

2 + κ2, β
4 + κ1

2 + κ2). Here, κ2 is the amount of increased sending

rate before the third congestion is observed. Since the sum of both sending rates is equal to C, κ2 = α+β
4 .

At the detection of the n-th congestion, sending rates of both nodes can be represented by ( α
2(n−1)

+ κ1

2(n−2)
+

κ2

2(n−3)
+ ...+ κn,

β
2(n−1)

+ κ1

2(n−2)
+ κ2

2(n−3)
+ ...+ κn). Since κi = α+β

4 for all i, sending rates are arranged by

( α
2(n−1)

+ α+β
4 (1 + 1

2 + 1
4 + ...+ 1

2(n−2)
, β
2(n−1)

+ α+β
4 (1 + 1

2 + 1
4 + ...+ 1

2(n−2)
).

As a result, n becomes large enough, sending rates of node A and B converge to α+β
2 = C

2 . Also in the case

where more than two nodes exist in the network, proof can be done in the similar way.

2) Alternative self-clocking: Feedback is used not only as an indication of congestion, but also to determine

when a node should send messages. Since the proposed scheme does not use feedback, we propose another method

to determine when a node should send messages.

Fig. 6 shows the self-clocking mechanism. As mentioned above, each node measures the one-way delay, Tmavg .

Since a message can be dropped in a burst if a node sends messages simultaneously at the start of a round, messages

are individually sent at a certain interval. We calculate this interval as Tmavg
/cwnd. For example, a new round is

started at T1, cwnd is cwnd1, and the measured delay is Tmavg1
. Each message is sent at an interval of

Tmavg1

cwnd1
. The

next round is started at T2 = T1 + Tmavg1
. Since the measured delay is increasing (Tmavg2

> Tmavg1
), cwnd2 is

smaller than cwnd1. A node sends messages at an interval of
Tmavg2

cwnd2
. The third round is started at T3 = T2+Tmavg2

.

It sends cwnd3 messages at an interval of
Tmavg3

cwnd3
.

IV. PERFORMANCE EVALUATIONS

We validated our proposed algorithm using several simulations. For this, we developed a new event-driven network

simulator for DTNs [14]. This section presents an overview of the simulator and the simulation results.
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Fig. 7: Overview of the proposed simulator.

A. Simulator Overview

To verify the proposed algorithm, we developed a new network simulator for DTNs. Some researchers have

developed DTN simulators, but these have some limitations and problems because they are based on a time-driven

approach.

The event-driven simulator progresses time to the next event time. Therefore, all events should be generated before

simulation is started. There are three event types, contact events, message creation events and transfer events. A

contact event is generated when a node encounters another node. A message creation event is produced by traffic

generation. A transfer event is generated when actual transmission occurs.

We developed event generation functions and a framework for the simulator and the new protocols. We also

identified basic features of DTNs and the protocols. The simulator first generates all contact, message creation and

transfer events to be processed during a simulation instance. The simulation scheduler processes events in order of

the event execution time. The simulation states are updated at execution of every event.

The simulator consists of five main parts: a) a mobility generator; b) an end-to-end connectivity generator; c) a

contact event generator; d) a traffic event generator; and e) the simulator core, which includes the event scheduler

and the node agent. The mobility generator and the end-to-end connectivity generator are independent of the other

parts. The simulator is shown in Figure 7.

Node movement is generated by the mobility generator via a random waypoint movement model. An end-to-end

connectivity generator makes connections between the two nodes used in the traffic generator. The contact event

generator creates contact events using results from the mobility generator. Message events are created by the traffic

event generator. Currently, we implement CBR traffic with fixed and random end-to-end connectivity. Contact and

message creation events are scheduled in the simulator core. Simulations are performed using configuration files in

which traffic patterns, scenarios and other settings can be chosen.
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B. Simulation study

To observe the performance of the proposed scheme, we set the following simulation parameters: a) number of

nodes, 100; b) mobility model, a random way-point model; c) map, 3000 m × 3000 m; d) node speed, 30 m/s;

e) packet transmission range, 50 m; f) one-hop bandwidth, 10 messages/s; and g) buffer size, 100 messages. The

buffer forwarding and drop policies are forward-youngest and drop-oldest, respectively. We use epidemic routing.

The first simulation is to verify the proposed rate control scheme under a basic topology where 100 flows exist

in the network. In order to figure out the optimal throughput in a given network environment, we plot the number

of received messages by changing the CBR sending rate of all nodes from 0.05 to 0.5. As being indicated by the

blue dotted line in Fig. 8, the optimal throughput is achieved when the sending rate of a node is maintained around

0.11, and at a higher sending rate, the achieved throughput tends to decreases due to congestion. The red dots

show the results obtained by applying the proposed rate control scheme. Without any explicit feedback from the

network, the proposed scheme achieves 91% of the optimal throughput by holding the sending rate of a node at

around 0.23. It is also confirmed that throughput fairness is also provided by the proposed scheme. The delivery

ratio is approximately 98% and the one-way delay is approximately 135 s.

In the second simulation, we have examined the proposed scheme under a dynamic topology where 99 flows
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have been in the network and a single flow (node88) is newly inserted into the network. Here, we note that node88

is randomly selected among 100 nodes. Simulation result is shown in Fig. 9. The red dashed line shows the average

number of messages being sent by the existing 99 flows. The blue dotted line shows the number of messages being

sent by the new flow. A new flow starts at 3000s , but it does not send more messages for the next 1500s. This

is because node88 cannot receive any message destined for itself, or it does not deliver any message to the final

destination during that period. At around 4700s, node88 resumes to send messages and its sending rate successfully

converges to the average sending rate of the other flows in the network, while the existing flows adjust their sending

rates for fair access.

In the last simulation, we observe flows sending rate with a massive change in the number of flows. From 0 to

10000s, 50 flows send messages. From 10000 to 40000s, 100 flows send messages. Finally, from 40000 to 50000s,

only 30 flows send messages. We conducted 10 different simulations with different mobilities. In Fig. 10, the red

line shows the average number of messages being sent. The light blue, black and dark blue lines represent the

optimal number of messages sent by 100, 50 and 30 flows, respectively. As shown in Fig. 10, the change of flows

are successfully detected and sending rates are properly controlled by the proposed scheme. Here we note that the

optimal sending rate with 100 nodes is different from that in the first simulation. This is due to the randomness in

node mobility.
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Fig. 10: Change the number of flows

V. CONCLUSION

We proposed a new end-to-end rate control algorithm to avoid network congestion in ICNs. Current congestion

control algorithms for ICNs are implemented in layer 3 and cannot resolve network congestion when each node

inputs many messages to the network. According to the proposed algorithm, each node adjusts its sending rate to

maximize network utilization while keeping the delivery ratio high. It also guarantees fairness among nodes. To

verify the proposed algorithm, we developed a new event-driven network simulator. Simulations demonstrated that

the proposed algorithm is effective.
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