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Abstract

Non-volatile write cache (NVWC) can help to improve

the performance of I/O-intensive tasks, especially write-

dominated tasks. The benefit of NVWC, however, cannot

be fully exploited if an admission policy blindly caches

all writes without differentiating the criticality of each

write in terms of application performance. We propose

a request-oriented admission policy, which caches only

writes awaited in the context of request execution. To ac-

curately detect such writes, a critical process, which is in-

volved in handling requests, is identified by application-

level hints. Then, we devise criticality inheritance proto-

cols in order to handle process and I/O dependencies to a

critical process. The proposed scheme is implemented on

the Linux kernel and is evaluated with PostgreSQL rela-

tional database and Redis NoSQL store. The evaluation

results show that our scheme outperforms the policy that

blindly caches all writes by up to 2.2× while reducing

write traffic to NVWC by up to 87%.

1 Introduction

For decades, processor and memory technologies have

been significantly improved in terms of performance

whereas the performance of storage still lags far behind

that of other components. To remedy this performance

gap, modern operating systems (OSes) use main memory

as a cache for underlying storage. With large main mem-

ory, this technique is effective for read-intensive tasks by

hiding long latency of storage reads [63]. For write op-

erations, however, caching is less effective because the

volatility of main memory may lead to data loss in the

event of power failure. As a consequence, write opera-

tions dominate the traffic to storage in production work-

loads operating with large main memory [13, 50, 69, 77].

Non-volatile write cache (NVWC) can help to im-

prove the performance of I/O-intensive tasks, especially

∗Currently at EMC

write-dominated tasks. For this reason, battery-backed

DRAM (NV-DRAM) has been widely exploited as an

NVWC device for file systems [11, 15, 41], transaction

processing systems [27, 57, 74], and disk arrays [36, 37].

In addition, various caching solutions based on flash

memory have been extensively studied to efficiently uti-

lize fast random access of flash memory [10, 19, 46, 49,

65]. Storage-class memory (SCM), such as spin-transfer

torque magneto-resistive memory (STT-MRAM) [17]

and phase change memory (PCM) [67], is expected to be

deployed as NVWC since it provides low latency compa-

rable to DRAM and persistency without backup battery.

Blindly caching all writes, however, cannot fully uti-

lize the benefit of NVWC for application performance

due to the following reasons. Firstly, it can frequently

stall writes in the performance-critical paths of an ap-

plication due to the lack of free blocks in NVWC, es-

pecially for capacity-constrained devices, such as NV-

DRAM and STT-MRAM. Secondly, it can cause severe

congestion in OS- and device-level queues of NVWC,

thereby delaying the processing of performance-critical

writes. Finally, it would hurt the reliability and perfor-

mance depending on the characteristics of the NVWC

device used. For instance, caching non-performance-

critical writes exacerbates wear-out of storage medium,

such as flash memory [39, 40, 80] and PCM [17, 66],

without any gain in application performance.

We propose a request-oriented admission policy that

only allows critical writes (i.e., performance-critical

writes) to be cached in NVWC. In particular, we define

critical writes as the writes awaited in the context of re-

quest execution since the performance of processing an

external request, like a key-value PUT/GET, determines

the level of application performance. By using the pro-

posed policy, a large amount of non-critical writes can

be directly routed to backing storage bypassing NVWC

because typical data-intensive applications, such as rela-

tional database management system (RDBMS) [38, 59]

and NoSQL store [25, 31], delegate costly write I/Os
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to background processes while concurrently handling re-

quests using other processes; we refer to any kind of ex-

ecution context as process in this paper.

The key challenge of realizing the proposed policy

is how to accurately identify all critical writes. Basi-

cally, synchronous writes requested by a critical pro-

cess, which is involved to handle requests, are critical

writes by definition. This simple identification, however,

cannot detect process and I/O dependency-induced crit-

ical writes generated by complex synchronizations dur-

ing runtime. Since synchronization is the technique fre-

quently used to ensure correct execution among concur-

rent processes and I/Os, unresolved dependencies can

significantly delay the progress of a critical process,

thereby degrading application performance.

We devise hint-based critical process identification

and criticality inheritance protocols for accurate detec-

tion of critical writes. Basically, the proposed scheme

is guided by a hint on a critical process from an appli-

cation. Based on the given hint, synchronous writes re-

quested by a critical process are cached in NVWC. To

handle process dependency, we inherit criticality to a

non-critical process on which a critical process depends

to make progress. To handle I/O dependency, we dy-

namically reissue an outstanding non-critical write with

which a critical process synchronizes to NVWC without

compromising the correctness. We also resolve cascad-

ing dependencies by tracking blocking objects recorded

in the descriptors of processes who have dependencies to

a critical process.

Our proposed scheme was implemented on the Linux

kernel and FlashCache [2]. Based on the prototype

implementation, we evaluated our scheme using Post-

greSQL [5] and Redis [23] with a TPC-C [7] and

YCSB [26] benchmark, respectively. The evaluation re-

sults have shown that the proposed scheme outperforms

the policy that blindly caches all writes by 3–120% and

17–55% while reducing write traffic to NVWC by up to

72% and 87%, for PostgreSQL and Redis, respectively.

Our key contributions are the followings:

• We introduce a novel NVWC admission policy

based on request-oriented write classification.

• We devise criticality inheritance protocols to handle

complex dependencies generated during runtime.

• We prove the effectiveness of our scheme by con-

ducting case studies on real-world applications.

The remainder of this paper is organized as follows:

Section 2 describes the background and motivation be-

hind this work. Section 3 and Section 4 detail the design

of the proposed policy. Section 5 explains the prototype

implementation, and Section 6 presents our application

studies. Section 7 presents the evaluation results. Finally,

Section 8 presents related work and Section 9 concludes

our work and presents future direction.

2 Background and Motivation

2.1 Non-volatile Write Caches

Unlike conventional volatile caches, non-volatile write

cache (NVWC) is mainly used to durably buffer write

I/Os for improving write performance. Traditionally,

NV-DRAM has been widely used as an NVWC device

to enhance write performance by exploiting its low la-

tency and persistency. Typical usages of NV-DRAM are

writeback cache in RAID controllers [36, 37] and drop-

in replacement for DDR3 DIMMs [8, 78]. An inherent

limitation of NV-DRAM is small capacity due to high

cost per capacity and battery scaling problem.

Recently, flash memory-based caching is gaining sig-

nificant attention because it delivers much higher per-

formance than traditional disks and much higher density

than NV-DRAM. Thus, flash memory is widely adopted

in many storage solutions, such as hybrid storage [19, 70]

and client-side writeback caches in networked storage

systems [10, 49, 65]. Despite of the benefits, flash mem-

ory also has caveats to be used as an NVWC device be-

cause it has limited write endurance [39, 40, 80] and

garbage collection overheads [44, 45, 47, 62].

Emerging SCM, such as STT-MRAM [17] and

PCM [67], is also a good candidate for an NVWC device

since it provides low latency comparable to DRAM and

persistency without backup power. Though STT-MRAM

promises similar access latency to that of DRAM, its ca-

pacity is currently very limited due to technical limita-

tion [1]. On the other hand, PCM has been regarded as

more promising technology to be deployed at commer-

cial scale than STT-MRAM [3]. PCM, however, has lim-

ited write endurance [52, 66], which necessitates careful

management when it is used as an NVWC device.

2.2 Why Admission Policy Matters

A straightforward use of NVWC is to cache all writes

and to writeback cached data to backing storage in a

lazy manner. This simple admission policy is intended to

provide low latency for all incoming writes as much as

possible for improving system performance (e.g., IOPS).

However, blindly caching all writes cannot fully utilize

the benefit of NVWC in terms of application perfor-

mance (e.g., transactions/sec) for the following reasons.

Firstly, caching all writes can frequently stall writes

that are in the critical paths of an application due to

the lack of free blocks in NVWC. This is because the

speed of making free blocks is eventually bounded by

the writeback throughput to backing storage, such as

2
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Figure 1: Limitations of caching all writes. TPC-C throughput is normalized to the case of No NVWC.

disks. The stalled writes problem becomes more seri-

ous in capacity-constrained devices, such as NV-DRAM

and STT-MRAM. In order to quantify the impact of

stalled writes on application performance, we ran a TPC-

C benchmark [7] against PostgreSQL RDBMS [5] on

a Linux-based system having NV-DRAM-based NVWC

(emulated via ramdisk); see Section 7 for the detailed

configuration. As shown in Figure 1(a), the TPC-C

throughput normalized to the case without NVWC (i.e.,

disk only) drops from 1.99 to 1.09 as the capacity of

NVWC decreases. This is because the frequency of write

stalls in critical paths of PostgreSQL (e.g., stalls during

log commit) is highly likely to increase as the ratio of

stalled writes increases.

Secondly, caching all writes can incur significant

congestion in OS- and device-level request queues of

NVWC, thereby delaying the processing of critical

writes. When the request queues of NVWC are con-

gested, write requests need to wait at the queues even

though the NVWC has sufficient free blocks. More-

over, queue congestion of a storage-based NVWC such

as SSD can be exacerbated by concurrent I/Os for writing

back cached data. The concurrent I/Os include NVWC

reads for retrieving a dirty cache block into main mem-

ory and NVWC writes for updating the corresponding

metadata. In order to measure the impact of aggravated

queueing delay, we ran the TPC-C benchmark with a

flash SSD-based NVWC. As shown in Figure 1(b), the

average length of OS request queue increases as the num-

ber of clients increases, thereby gradually degrading the

normalized TPC-C throughput. In addition, the perfor-

mance further decreases as the concurrent I/Os increase

as shown in Figure 1(c); the frequency of writebacks de-

pends on the ratio of dirty blocks in NVWC for this mea-

surement. In most cases, NVWC provides even lower

performance than that without NVWC (up to 47% per-

formance loss) though write stalls did not occur at all in

all the configurations.

Finally, caching all writes would hurt reliability and

performance depending on the characteristics of an

NVWC device. For example, caching non-critical writes

exacerbates the wear-out of an NVWC device, like flash

and PCM, without any gain in application performance.

In addition, caching non-critical writes can increase the

probability of garbage collection while processing criti-

cal writes in flash-based NVWCs.

For these reasons, caching only critical writes to

NVWC is vital to fully utilize a given NVWC device

for application performance. From the analysis based

on the realistic workload (Section 7.2), we found that all

writes do not equally contribute to the application per-

formance. This finding implies that there is a need to

classify write I/Os for typical data-intensive applications

such as databases and key-value stores.

3 Which Type of Write is Critical?

3.1 Request-Oriented Write Classification

The primary role of a data-intensive application is to pro-

vide a specific data service in response to an external

request, like a PUT/GET request to a key-value store.

In such an application, the performance of request pro-

cessing determines the level of application performance

a user perceives. Therefore, we need to identify which

type of writes delays the progress of request processing

to classify critical writes.

Synchronous writes can be a good candidate for the

type of critical writes. Traditionally, write I/O is broadly

classified into two categories in the system’s viewpoint:

asynchronous and synchronous. When a process issues

an asynchronous write, it can immediately continue pro-

cessing other jobs without waiting for the completion

of the write. A synchronous write, on the other hand,

is awaited by a requesting process until the write com-

pletes. Due to this difference, prioritizing synchronous

writes over asynchronous ones is known as a reasonable

method to reduce system-wide I/O wait time [35], and

hence it is adopted in commodity OS [28].

However, not all synchronous writes are truly syn-

chronous from the perspective of request execution. Typ-

ical data-intensive applications delegate a large amount

of synchronous writes to a set of background processes

as a way of carrying out internal activities. For instance,

RDBMS [38, 59] and NoSQL store [25, 31] adopt a vari-

ant of logging technique that accompanies only a small

amount of (mostly sequential) synchronous writes during

request processing while conducting a burst of (mostly

3
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Write Type Process Ratio (%)

Sync.

backends 44.312

checkpointer 34.664

log writer 0.368

jbd2 (kernel) 0.094

etc 0.007

Async.
kworker (kernel) 20.554

etc 0.002

Table 1: Breakdown of writes by type and process.

random) synchronous writes in background. This is an

intrinsic design to achieve high degree of application per-

formance without loss of durability by segregating costly

synchronous writes from the critical path of request exe-

cution as much as possible.

To verify such behaviors, we ran the TPC-C bench-

mark using 24 clients without NVWC and recorded the

type of write issued per process. As shown in Table 1,

about 80% of the writes are synchronous, and most of

them are performed by backends and checkpointer. In

PostgreSQL, the backend is a dedicated process for han-

dling requests while the checkpointer periodically issues

a burst of synchronous writes to reflect buffer modifi-

cations to backing storage. Likewise, in kernel-level,

journaling daemon (i.e., jbd2) also issues synchronous

writes (though small amount in this case) for commit-

ting and checkpointing file system transactions. Basi-

cally, the synchronous writes requested by the processes

other than the backends are irrelevant to request process-

ing. Furthermore, according to our analysis result (Ta-

ble 3), asynchronous writes occasionally block the back-

ends because of complex synchronizations during run-

time. The conventional synchrony-based classification,

therefore, is inadequate for classifying critical writes.

We introduce request-oriented write classification that

classifies a write awaited in the context of request execu-

tion as a critical write regardless of whether it is issued

synchronously or not. Based on this classification, only

critical writes are cached into NVWC while non-critical

writes are routed to backing storage directly. As a re-

sult, a request can be handled quickly by avoiding ex-

cessive write stalls and queue congestion. In addition,

device-specific reliability and performance issues, which

are discussed in Section 2.2, can be eased without hurt-

ing application performance.

3.2 Dependency-Induced Critical Write

In data-intensive applications, one or more processes are

involved in handling requests. Synchronous writes is-

sued by these processes are definitely critical; hence,

we refer to this type of processes as a critical pro-

cess. Caching these synchronous writes alone, however,

is insufficient for identifying all critical writes. This

is because runtime dependencies generated by complex
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formance. CP caches synchronous writes requested by

critical processes while Optimal caches all writes with-

out stalls. Network latencies are omitted for brevity.

synchronizations among concurrent processes and I/Os

make critical processes wait for the writes that are not

synchronously issued by them.

There are two types of dependencies associated with

write I/Os: a process dependency and an I/O depen-

dency. The process dependency occurs when two pro-

cesses interact with each other via synchronization prim-

itives, such as a lock and condition variable. The process

dependency complicates the accurate detection of criti-

cal writes because a non-critical process may issue syn-

chronous writes within a critical section making a critical

process indirectly wait for the completion of the writes.

On the other hand, the I/O dependency occurs between

a critical process and an ongoing write I/O. Basically,

the I/O dependency is generated when a critical process

needs to directly wait for the completion of an outstand-

ing write in order to ensure consistency and/or durability.

In order to quantify the significance of the depen-

dency problems, we measured the wait time of critical

processes (i.e., PostgreSQL backends) using Latency-

TOP [34] during the execution of the TPC-C benchmark

using 24 clients with 4GB ramdisk-based NVWC. Fig-

ure 2 shows the impact of complex dependencies on the

TPC-C throughput; CP caches only synchronous writes

requested by critical processes while Optimal caches all

writes without stalls and queue congestion. As we ex-

pect, CP mostly eliminates the latency incurred by syn-

chronous writes (i.e., wait on page writeback()).

However, CP still suffers from excessive latencies mainly

caused by process dependency (i.e., mutex lock()) and

I/O dependency (i.e., sleep on shadow bh()). Note

that the I/O dependency occurs because a critical pro-

cess attempts to update a buffer page that is under writ-

ing back as the part of a committing file system transac-

tion. Consequently, CP achieves only a half of the per-

formance improvement compared to Optimal.

In addition, there are many other sources of exces-

sive latencies in terms of the average and worst case

as shown in Table 2. The read/write semaphore for

serializing on-disk inode modifications represented as

down read() induces about one second and several sec-

onds latencies in the average and worst case, respec-

4
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tively. The journaling-related synchronizations for en-

suring file system consistency also incur high latencies.

In particular, wait transaction locked() is called to

synchronize with all the processes updating the current

file system transaction to complete their execution while

jbd2 log wait commit() is called to wait for the jour-

naling daemon to complete the commit procedure of a

file system transaction. The synchronization methods

that induce I/O dependency, such as lock buffer() and

lock page(), delay the progress of critical processes up

to several seconds. Though some of the synchronization

methods account for a small portion of the total latency,

they would increase tail latency, thereby degrading user

experience in large-scale services [29]. Therefore, all

synchronization methods causing latency to the critical

processes should be handled properly in order to elimi-

nate unexpected request latency spikes.

4 Critical Write Detection

4.1 Critical Process Identification

In order to detect all critical writes, we should identify

critical processes in the first place. To do so, we adopt

an application-guided approach that exploits application-

level hints.

The main benefit of the application-guided approach

is that it does not increase the complexity of the OS

kernel. Accurately identifying critical processes with-

out application guidance requires huge engineering ef-

fort to the kernel. For instance, similar to the previous

approaches [83, 84], the kernel should track all inter-

process communications and network-related I/Os to in-

fer the processes handling requests. In addition, the

kernel should adopt complex heuristics (e.g., feedback-

based confidence evaluation [84]) to reduce the possibil-

ity of misidentification. On the other hand, an applica-

tion can accurately decide the criticality of each process

since the application knows the best which processes are

currently involved in handling requests.

Though the application-guided approach requires ap-

plication modifications, the engineering cost for the

modifications is low in practice. This is because an appli-

cation developer does not need to know the specifics of

underlying systems since the hint (i.e., disclosure [64])

revealing a critical process remains correct even when

the execution environment changes. In addition, typical

data-intensive applications, such as MySQL [4], Post-

greSQL, and Redis, already distinguish foreground pro-

cesses (i.e., critical processes) from background pro-

cesses. This distinction is also common for event-driven

applications since they need to clearly separate internal

activities from request flows as exemplified in Cassan-

dra [43]. As a consequence, the required modification is

Dep. Synchronization Avg Max

Type Method (ms) (ms)

Process

down read 1088.09 6065.2

wait transaction locked 493.05 4806.8

mutex lock 134.55 6313.55

jbd2 log wait commit 40.96 391.36

I/O

lock buffer 912.38 3811.35

sleep on shadow bh 225.25 3560.47

lock page 8.08 3009.84

wait on page writeback 0.04 19.12

Table 2: Sources of dependencies. Average and maxi-

mum wait times of backends are shown in the CP case.

only a few lines of code in practice; see Section 6 for our

application studies.

Since a hint is solely used for deciding admission to

NVWC, a wrong hint does not affect the correct execu-

tion of an application. However, hint abuse by a mali-

cious or a thoughtless application may compromise per-

formance isolation among multiple applications sharing

NVWC. This problem can be solved by overriding criti-

cality of each write at the kernel based on a predefined

isolation policy. Addressing the issue resulting from

sharing NVWC is out of scope of this paper.

4.2 Criticality Inheritance Protocols

As we discussed in Section 3.2, the process and I/O de-

pendencies can significantly delay the progress of a crit-

ical process. In the rest of this section, we explain our

criticality inheritance protocols that effectively resolve

the process and I/O dependencies.

4.2.1 Process Criticality Inheritance

Handling the process dependency has been well-studied

in the context of process scheduling because the process

dependency may cause priority inversion problem [51].

Priority inheritance [72] is the well-known solution for

resolving the priority inversion problem.

Inspired by the previous work, we introduce process

criticality inheritance to resolve the process dependency.

Process criticality inheritance is similar to the priority in-

heritance in that a non-critical process inherits criticality

when it blocks a critical process until it finishes its exe-

cution within the synchronized region. The main differ-

ence between process criticality inheritance and priority

inheritance is that the former is used to prioritize I/Os

whereas the latter is used to prioritize processes.

Figure 3(a) illustrates an example of process criticality

inheritance: (1) critical process P1 attempts to acquire a

lock to enter a critical section. (2) Non-critical process

P2 inherits criticality from P1 since the lock is held by

P2. Then, the synchronous write to block B1 issued by

P2 is directed to NVWC to accelerate the write within

5
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Figure 3: Criticality inheritance protocols. Thick lines represent a critical path of request execution while dotted

lines indicate blocked execution. Circles and boxes represent write I/Os to specific blocks and blocking objects of

specific processes, respectively. Thick arrows indicate specific actions described in the corresponding texts while thin

arrows to/from write I/Os show I/O submission/completion.

the critical path. (3) P2 wakes up P1 when its execution

within the critical section has been completed, and P1

continues the rest of its job. In this example, the write

latency of block B1 is minimized by using process crit-

icality inheritance since it indirectly delays the request

execution.

4.2.2 I/O Criticality Inheritance

Handling the I/O dependency is more complicated than

that of the process dependency since inheriting criticality

to the ongoing write to backing storage requires reissuing

the write to NVWC without side effects (e.g., duplicated

I/O completion). A possible solution for eliminating the

side effects is canceling an outstanding write to a disk.

In practice, however, canceling a specific ongoing write

needs significant engineering efforts due to multiple ab-

straction stages in I/O stack. In Linux, for example, an

I/O can be staged in either an OS queue managed by an

I/O scheduler or a storage queue managed by a device

firmware. Hence, the procedure of canceling requires

lots of modifications to various in-kernel components.

In order to rapidly resolve the I/O dependency while

maintaining low engineering cost, we devise immediate

reissuing and I/O completion discarding as a technique

for I/O criticality inheritance. Figure 3(b) describes the

proposed mechanism: (1) critical process P1 needs to

wait for the completion of the write request to block B2.

(2) P1 reissues B2 to NVWC to resolve the I/O depen-

dency between P1 and B2. (3) The event of I/O com-

pletion of the reissued B2 wakes up P1. (4) Later, the

I/O completion of the original write to B2 is discarded to

suppress the duplicated completion notification.

The main drawback of the proposed technique for I/O

criticality inheritance is that it cannot eliminate unneces-

sary write traffic to a disk since it does not cancel ongo-

ing writes to the disk. However, the performance penalty

would be small since the duplicated write to a specific

block is highly likely to be processed as a single sequen-

tial write merged with other writes to adjacent blocks in

modern OSes. Moreover, discarding several blocks in-

cluded in a write request may result in splitting the re-

quest into multiple requests, thereby decreasing the ef-

ficiency of I/O processing. In practice, the amount of

reissued writes is insignificant despite of its large contri-

bution to application performance (Table 3).

4.2.3 Handling Cascading Dependencies

Cascading dependencies, a chain of process and I/O

dependencies, make precise detection of critical writes

more difficult if the chain contains a process that is al-

ready blocked. For example, as illustrated in Figure 3(c),

non-critical process P3 issues a synchronous write and is

blocked to wait for the completion of the write. Later,

non-critical process P2 sleeps while holding a lock be-

cause it needs to wait for an event from P3. In this situ-

ation, if critical process P1 attempts to acquire the lock

that is held by P2, P1 blocks until the write issued by P3

is completed even though P2 inherits criticality from P1.

We found that this scenario occurs in practice because

of complex synchronization behaviors for ensuring file

system consistency.

In order to handle the cascading dependencies, we

record a blocking object to the descriptor of a process

when the process is about to be blocked. There are two

types of the blocking object in general: a process and

an I/O for process dependency and I/O dependency, re-

spectively. As a special case, a lock is recorded as the

blocking object when a process should sleep to acquire

the lock, in order to properly handle the cascading depen-

dencies to both the lock owner and the waiters having

higher lock-acquisition priority. Based on the recorded

blocking object, a critical process can effectively track

the cascading dependencies and can handle them using

the process and I/O criticality inheritances.

Figure 3(c) demonstrates an example to describe how

the cascading dependencies are handled: (1) critical pro-

6
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cess P1 attempts to acquire the lock that is held by

non-critical process P2. (2) Then, P2 inherits critical-

ity from P1, and P1 checks P2’s blocking object. (3)

Since P2 is currently blocked waiting for an event from

non-critical process P3, P3 also inherits criticality and

P1 again checks P3’s blocking object. (4) Due to P3 cur-

rently blocks on B1, P1 initiates reissuing of block B1 to

NVWC and sleeps until the lock has been released by P2.

(5) The I/O completion of the reissued B1 wakes up P3,

and (6) P3 wakes up P2 after doing some residual work.

(7) P2, in turn, wakes up P1 after completing its execu-

tion in the critical section. Finally, P1 enters the critical

section and continues its job.

5 Implementation

We implemented our scheme on x86-64 Linux version

3.12. For the critical process identification, we added

a pair of special priority values to dynamically set or

clear criticality of a process (or a thread) to the existing

setpriority() system call interface. We also added a

field to the process descriptor for distinguishing critical-

ity of each process.

For handling process and I/O dependencies, we im-

plemented criticality inheritance protocols to blocking-

based synchronization methods. Specifically, pro-

cess and I/O criticality inheritances are implemented

to the methods that synchronize with a process

(e.g., mutex lock()) and an ongoing I/O (e.g.,

lock buffer()), respectively. In all the synchroniza-

tion points, a blocking object is recorded into the descrip-

tor of a process who is about to be blocked for synchro-

nization.

We implemented our admission policy to Flash-

Cache [2] version 3.1.1, which is a non-volatile block

cache implemented as a kernel module. We modified the

admission policy of FlashCache to cache only the writes

synchronously requested by both critical and criticality-

inherited processes. We also added the support for I/O

criticality inheritance to FlashCache. In particular, the

modified FlashCache maintains the list of outstanding

non-critical writes to disk and searches the list when a

critical process requests for reissuing a specific write. If

the requested write is found in the list, FlashCache im-

mediately reissues that write to NVWC and discards the

result of the original write upon completion.

6 Application Studies

To validate the effectiveness of our scheme, we

chose two widely deployed applications: PostgreSQL

RDBMS [5] version 9.2 and Redis NoSQL store [23]

version 2.8. For the critical process identification, we in-

serted eleven and two lines of code excluding comments

to PostgreSQL and Redis, respectively. This result indi-

cates that adopting the interface for critical process iden-

tification is trivial for typical data-intensive applications.

PostgreSQL RDBMS. In PostgreSQL, backend is

dedicated to client for serving requests while other pro-

cesses, such as checkpointer, writer, and log writer, carry

out I/O jobs in background. The checkpointer flushes

all dirty data buffers to disk and writes a special check-

point record to the log file when the configured num-

ber of log files is consumed or the configured timeout

happens, whichever comes first. The writer periodically

writes some dirty buffers to disk to keep regular backend

processes from having to write out dirty buffers. Simi-

larly, the log writer periodically writes out the log buffer

to disk in order to reduce the amount of synchronous

writes needed for backend processes at commit time.

We classified backends as critical processes by call-

ing the provided interface before starting the main loop

of each backend. We also classified a process who is

holding WALWriteLock as a temporary critical process

because WALWriteLock is heavily shared between back-

ends and other processes, and flushing the log buffer to a

disk is conducted while holding the lock. This approach

is similar to the priority ceiling [72] in that a process in-

herits criticality of a lock when the process acquires the

lock.

Redis NoSQL store. Redis has two options to pro-

vide durability: snapshotting and command logging. The

snapshotting periodically produces point-in-time snap-

shots of the dataset. The snapshotting, however, does not

provide complete durability since up to a few minutes of

data can be lost. The fully-durable command logging,

on the other hand, guarantees the complete durability by

synchronously writing an update log to a log file before

responding back to the command. In the command log-

ging, log rewriting is periodically conducted to constrain

the size of the log file. Though the command logging

can provide stronger durability than the snapshotting, it

is still advisable to also turn the snapshotting on [25].

Similar to the PostgreSQL case, the snapshotting and

log rewriting are conducted by child processes in back-

ground while a main server process serves all requests

sequentially. Hence, we classified only the main server

process as a critical process by calling the provided in-

terface before starting the main event loop.

7 Evaluation

This section presents evaluation results based on the pro-

totype implementation. We first detail the experimental

environment. Then, we show the experimental results for

both PostgreSQL and Redis to validate the effectiveness

of the proposed scheme.

7
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Figure 4: PostgreSQL performance. TPC-C throughput is averaged over three runs for each admission policy.

7.1 Experimental Setup

Our prototype was installed on Dell PowerEdge R420,

equipped with two quad-core Intel Xeon E5-2407

2.4GHz processors and 16GB RAM; CPU clock fre-

quency is set to the highest level for stable performance

measurement. The storage subsystem is comprised of

three 500GB 10K RPM WD VelociRaptor HDDs, one of

which is dedicated to OS and the others are used as back-

ing storage of NVWC. We used Ubuntu 14.04 with the

modified Linux kernel version 3.12 as an OS and ext4

file system mounted with the default options.

For NVWC devices, we used a 4GB ramdisk (allo-

cated from the main memory) and a 256GB Samsung

840 Pro SSD. To correctly emulate the persistency of

the ramdisk-based NVWC in the existence of volatile

CPU caches, we used the non-temporal memory copy de-

scribed in [20] when the data is written to ramdisk. For

the stable performance measurement of the SSD-based

NVWC, we discard all blocks in SSD and give enough

idle time before starting each experiment. In addition,

in-storage volatile write cache was turned off to eliminate

performance variations caused by internal buffering.

We used two criticality-oblivious admission policies:

ALL and SYNC. ALL, which is the default of Flash-

Cache, caches all incoming writes while SYNC caches

only synchronous writes. In addition, we used three

criticality-aware admission policies: CP, CP+PI, and

CP+PI+IOI. CP caches synchronous writes requested by

critical processes. CP+PI caches direct and cascading

process dependencies-induced critical writes in addition

to CP. CP+PI+IOI additionally caches direct and cascad-

ing I/O dependencies-induced critical writes.

7.2 PostgreSQL with TPC-C

We used TPC-C [7] as the realistic workload for Post-

greSQL. We set TPC-C scale factor to ten, which corre-

sponds to about 1GB of initial database, and simulated

24 clients running on a separate machine for 30 minutes.

We report the number of New-Order transactions exe-

cuted per minute (i.e., tpmC) as the performance met-

ric. PostgreSQL was configured to have 512MB buffer

pool, and the size of log files triggering checkpointing

was set to 256MB. The database and log files are located

on different HDDs according to the recommendation in

the official document [6]. As the practical alternative of

selective caching [21, 27, 42, 53], we used an additional

policy denoted as WAL that caches all write traffics to-

ward the log disk in NVWC. Since our work focuses on

caching write I/Os, we eliminate read I/Os by warming

up the OS buffer cache before starting the benchmark.

Performance with ramdisk-based NVWC. Fig-

ure 4(a) shows the TPC-C throughput averaged over

three runs as the capacity of ramdisk-based NVWC in-

creases from 32MB (scarce) to 4GB (sufficient). ALL

achieves the lowest performance in the 32MB case be-

cause it stalls 58% of all writes. ALL gradually improves

the performance as the NVWC capacity increases due to

the reduction of write stalls. Note that the performance

of ALL in the 4GB case is the optimal performance in

our configuration because the capacity and bandwidth of

NVWC are sufficient for absorbing all writes. SYNC

slightly improves the performance compared to ALL in

the low capacities since it reduces the number of write

stalls by filtering out asynchronous writes. SYNC, how-

ever, cannot catch up the performance of ALL in the

high capacities since it suffers from the dependencies in-

duced by the asynchronous writes. Though WAL and

CP do not suffer from write stalls at all in all the capaci-

ties, they achieve still lower performance than CP+PI and

CP+PI+IOI due to runtime dependencies. CP+PI further

improves performance by 4–12% over CP by handling

process dependencies. CP+PI+IOI outperforms CP+PI

by 18–29% by additionally handling I/O dependencies.

Compared to ALL, CP+PI+IOI gains 80% performance

improvement in the 32MB case and 72% reduction of

cached writes without performance loss in the 4GB case.

To further analyze the reason behind the per-

formance differences, we measured the wait time

8
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tency. 512MB ramdisk is used as the NVWC device and

network latencies are omitted for brevity.

 0

 5

 10

 15

 20

 25

ALL
SYNC

W
AL

CP CP+PI

CP+PI+IOI

 0

 2

 4

 6

 8

 10

4
K

B
 I

O
P

S
 (

x
1

0
0
0
)

A
v

g
 N

V
W

C
 w

ri
te

 l
at

en
cy

 (
m

s)SSD IOPS
HDDs IOPS

Avg write latency
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critical processes is represented as NVWC write latency.

of critical processes (i.e., PostgreSQL backends)

in the 512MB NVWC case. As shown in Fig-

ure 5, ALL and SYNC incur the synchronous

write latency (i.e., wait on page writeback)

and the mutex- and file system journaling-

induced latencies (i.e., sleep on shadow bh and

wait transaction locked) described in Section 3,

mainly due to frequent write stalls. Though WAL and

CP mostly eliminate the synchronous write latencies

by eliminating write stalls, they still incur excessive

latencies mainly caused by the mutex and file system

journaling. Though CP+PI further reduces latencies by

resolving the mutex-induced dependency, it delays the

progress of the critical processes because of unresolved

I/O dependences. CP+PI+IOI eliminates most of the

latencies since it additionally resolves I/O dependencies

including the dependency to the journaling writes.

As a result, CP+PI+IOI achieves the highest level of

application performance in all the capacities.

Performance with SSD-based NVWC. Figure 4(b)

shows the TPC-C throughput averaged over three runs as

the capacity of SSD-based NVWC increases from 4GB

to 128GB; the amount of concurrent I/Os for writeback

decreases as the NVWC capacity increases. Unlike the

case of the ramdisk-based NVWC, ALL achieves lower

performance than the criticality-aware policies in all the
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Figure 7: Caching efficiency. Ramdisk is used as the

NVWC device.

capacities due to severe congestion in the request queues

of the SSD. Though SYNC can ease the contention in the

SSD more than ALL, it still has dependency problems

incurred by the asynchronous writes directly routed to

HDDs. On the other hand, WAL and the criticality-aware

policies improve the application performance by reduc-

ing queue congestion compared to both ALL and SYNC.

In particular, CP+PI+IOI outperforms ALL and SYNC

by about 1.8–2.2× and 2.2–2.5×, respectively, because

it minimizes the queueing delays of critical writes by fil-

tering out more than a half of writes while effectively

handling process and I/O dependencies.

To show the impact of queueing delay on critical

writes, we measured 4KB IOPS for both the SSD and

HDDs, and the average latency of synchronous writes

requested by backends. As shown in Figure 6, ALL and

SYNC utilize the SSD better than the other policies. This

high utilization, however, causes severe congestion in the

request queues of SSD, thereby delaying the processing

of critical writes. WAL and the criticality-aware policies

utilize both the SSD and the HDDs in a more balanced

manner, thereby decreasing the queueing delay of critical

writes.

Caching efficiency. In order to quantify the caching

efficiency in terms of application performance, Figure 7

plots the performance per cached block as the capac-

ity of the ramdisk-based NVWC increases. WAL and

the criticality-aware policies show higher caching effi-

ciencies compared to ALL and SYNC. Note that ALL

and SYNC unexpectedly show high caching efficiency in

the low NVWC capacities because FlashCache directs a

write I/O to backing storage instead of waiting for a free

block when there is no free block in NVWC. Overall,

CP+PI+IOI utilizes NVWC more efficiently by 1.2–3.7×

and 1.2–2.2× compared to ALL and SYNC, respectively.

Breakdown of critical writes. To help understand

which types of data and I/O constitute critical writes, Ta-

ble 3 shows the breakdown of critical writes in terms of

data and I/O types. As we expect, the dominant type of

data comprising critical writes is the logs that are syn-

chronously written by backends during transaction com-

9
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Ratio (%) CP PI IOI Total

Data

Data (DB) 0 0.5209 0.0515 0.5723

Data (LOG) 98.7409 0.5707 0.0007 99.3123

Metadata 0 0 0.0014 0.0014

Journal 0 0.0782 0.0357 0.1140

Total 98.7409 1.1698 0.0893 100

I/O

Sync. 98.7409 1.0312 0.0357 99.8078

Async. 0 0.1387 0.0535 0.1922

Total 98.7409 1.1698 0.0893 100

Table 3: Breakdown of critical writes. 4GB ramdisk is

used as the NVWC device in the case of CP+PI+IOI.

mits. However, the rest of the critical writes is still cru-

cial since it contributes to additional 32% performance

improvement over CP alone (Figure 4(a)). On the other

side, the dominant type of I/O comprising critical writes

is synchronous writes. Though the portion of asyn-

chronous writes is insignificant, it contributes to addi-

tional 38% performance improvement over SYNC (Fig-

ure 4(a)). Overall, dependency-induced critical writes

have significant impact on application performance.

Performance disparity. Interestingly, we found the

disparity between the system performance (i.e., IOPS)

and the application performance (i.e., tpmC). For in-

stance, as shown in Figure 8, ALL better utilizes NVWC

by 40% than CP+PI+IOI leading to achieve 10% higher

system performance in the 512MB ramdisk case. How-

ever, CP+PI+IOI accomplishes 57% higher applica-

tion performance than that of ALL because CP+PI+IOI

avoids write stalls in the critical paths. This result val-

idates our argument on the necessity of the request-

oriented approach in order to effectively utilize a given

NVWC device.

7.3 Redis with YCSB

For Redis, we used the update-heavy (Workload A) and

read-mostly (Workload B) workloads provided by the

YCSB benchmark suite [26]. The data set was com-

posed of 0.5 million objects each of which is 1KB in

size. We simulated 40 clients running on a separate ma-

chine to generate ten millions of operations in total. We

report operations per second (i.e., ops/sec) as the perfor-

mance metric. We enabled both snapshotting and com-

mand logging according to the suggestion in the offi-

cial document [25]. Due to the single threaded design

of Redis [24], we concurrently ran four YCSB bench-

marks against four Redis instances to utilize our multi-

core testbed.

Performance. Figure 9 demonstrates the average

YCSB throughput over three runs normalized to ALL.

SYNC improves the performance over ALL since it fil-

ters out the asynchronous writes issued by the kernel

thread that cleans the OS buffer cache. Unlike the case

of PostgreSQL, CP shows significantly low performance
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Figure 9: Redis performance. 512MB ramdisk and

16GB SSD are used as the NVWC devices.

compared to the other policies because Redis frequently

incurs synchronous writes conducted by a journaling

daemon, which cannot be detected as the critical pro-

cess by CP, within the critical path of update request.

CP+PI dramatically improves the performance by 2–30×

over CP because it additionally caches the journaling

writes when there is a dependency between a critical pro-

cess and the journaling daemon. CP+PI+IOI further im-

proves the performance by 3–49% over CP+PI by addi-

tionally resolving the I/O dependencies mainly incurred

by the synchronizations to guarantee the file system con-

sistency. Though Workload B mostly consists of read re-

quests, the performance is affected by the admission pol-

icy used. This is because Redis serves the requests from

all clients sequentially using a single thread, thereby de-

laying the processing of read requests that are queued

behind update requests. By providing the first class sup-

port for critical writes, CP+PI+IOI outperforms ALL by

17–32% and 47–55% while reducing cached write by

20–29% and 84–87% in the ramdisk- and SSD-based

NVWC, respectively.

Tail latency. To show the impact of the admission

policies on tail latency, we present the latency distribu-

tion of YCSB requests in the SSD-based NVWC case.

As shown in Table 4, only CP+PI+IOI keeps 99.9th and

99.99th-percentile latencies below 100ms, which makes

users feel more responsive than higher latencies [18].

ALL and SYNC, on the other hand, increase the 99.9th-
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Latency (ms) 99th-%ile 99.9th-%ile 99.99th-%ile

A

ALL 80 649 >1000

SYNC 72 678 >1000

CP+PI+IOI 32 50 79

B

ALL 70 572 >1000

SYNC 59 438 >1000

CP+PI+IOI 23 32 83

Table 4: Redis tail latency. 16GB SSD is used as the

NVWC device.

percentile latency by an order of magnitude compared to

that of CP+PI+IOI. Moreover, the 99.99th-percentile la-

tencies of ALL and SYNC exceeds one second, which

is the maximum latency reported by YCSB. Consider-

ing the significance of providing consistent response la-

tencies to users [16, 71] especially for large-scale ser-

vices [29, 75], this result indicates that the proposed

scheme is essential for providing high quality services

to users.

8 Related Work

Non-volatile cache. A large volume of work has been

done to efficiently utilize non-volatile caches based on

NV-DRAM [15, 36, 37, 41], flash memory [19, 62, 70],

and SCM [14, 33, 48, 56, 61]. In addition, the case of

client-side non-volatile caches has been widely explored

for networked storage systems [10, 11, 49, 65]. On the

other side, researchers have extensively investigated the

case of non-volatile cache optimized for database sys-

tems such as cost- and pattern-aware flash caches for re-

lational database [32, 46, 55, 58] and persistent key-value

store [30]. In addition, several studies have been inves-

tigated the case of dedicating NV-DRAM [27, 42] and

flash memory [21, 53] to buffer or store transaction logs

of relational databases. None of the previous work has

taken the context of request execution into account for

managing a non-volatile cache despite of its importance.

I/O classification. Prioritizing synchronous I/Os over

asynchronous ones has been known as a reasonable

method for improving system performance [28, 35].

Classifying I/Os based on explicit hints from data-

intensive applications has been well-studied. Li et

al. [54] proposed a cache replacement policy that ex-

ploits different write semantics in a relational database

to maintain exclusivity between storage server and client

caches. Later, Xin et al. [79] proposed a more gen-

eral framework for the client hint-based multi-level cache

management. Similarly, Mesnier et al. [60] proposed an

I/O classification interface between computer and stor-

age systems. For user-interactive desktop environments,

Redline [76] statically gives higher I/O priority to inter-

active applications over non-interactive ones. Unlike the

previous work, our classification scheme considers the

I/O priority as dynamic property since it can be changed

during runtime due to complex dependencies.

Request tracing. Request-oriented performance de-

bugging has been widely explored for the end-user expe-

rience. Instrumentation-based profilers such as Project

5 [9] and MagPie [12] have been used for tracking re-

quest flows triggered by user requests. The Mystery Ma-

chine [22] and the lprof tool [82] extract the per-request

performance behaviors from the log files to diagnose per-

formance problems in large-scale distributed systems.

In addition, Shen has studied architectural implications

of request behavior variations in modern computer sys-

tems [73]. For user-interactive mobile platforms, AppIn-

sight [68] and Panappticon [81] provide the information

on the critical path of user request processing to appli-

cation developers for improving user-perceived respon-

siveness. In this work, we focus on tracking request exe-

cution in the write I/O path and apply the acquired infor-

mation to the admission policy of NVWC for improving

application performance.

9 Conclusion and Future Direction

We present the request-oriented admission policy, which

selectively caches the writes that eventually affect the

application performance while preventing unproduc-

tive writes from occupying and wearing-out capacity-

constrained NVWCs. The proposed scheme can con-

tribute to reducing capital cost of expensive NVWCs sat-

isfying desired service-level objectives. The results from

the in-depth analysis on realistic workloads justify our

claim that storage systems should consider the context of

request execution to guarantee a high degree of applica-

tion performance.

We plan to develop automatic critical process identi-

fication at kernel-level without an application hint in or-

der to support legacy and proprietary applications. We

also plan to apply the proposed classification to interac-

tive systems, such as mobile systems, considering a di-

rect user input as an external request.
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