
Extensible Video Processing Framework in Apache Hadoop

Chungmo Ryu, Daecheol Lee, Minwook Jang, Cheolgi Kim

Dept. of Computer and Information Engineering
Korea Aerospace University

Gyeonggi, Korea
Email: {fbcndah, rod8902, mwjang86, cheolgi}@gmail.com

Euiseong Seo

Dept of Software
Sungkyunkwan University

Suwon, Korea
Email: euiseong@gmail.com

Abstract—Digital video is prominent big data spread all over
the Internet. It is large not only in size but also in required
processing power to extract useful information. Fast processing
of excessive video reels is essential on criminal investigations,
such as terrorism. This demo presents an extensible video
processing framework in Apache Hadoop to parallelize video
processing tasks in a cloud environment. Except for video
transcoding systems, there have been few systems that can
perform various video processing in cloud computing environ-
ments. The framework employs FFmpeg for a video coder,
and OpenCV for a image processing engine. To optimize the
performance, it exploits MapReduce implementation details to
minimize video image copy. Moreover, FFmpeg source code
was modified and extended, to access and exchange essential
data and information with Hadoop, effectively. A face tracking
system was implemented on top of the framework for the demo,
which traces the continuous face movements in a sequence of
video frames. Since the system provides a web-based interface,
people can try the system on site. In an 8-core environment with
two quad-core systems, the system shows 75% of scalability.

I. INTRODUCTION

As smart phones and digital surveillance video systems

flourish, video becomes one of the dominant big-data appli-

cations. From surveillance video, we may want to identify

and track the suspects. In a user-video database, automatic

face recognition can be an attractive application. Video data

are not just large in size, but also in required processing

power. To extract meaningful information from a video,

such as facial signatures, massive process per image is

needed, while the entire video reel may have an excessively

long sequence of images. However, such processing must

be timely performed in mission-critical applications. For

instance of 2011 Vancouver ice hockey final riot, the police

inspected 1600 hour video, and a million images to identify

the prime suspects. In such cases, investigation must be

completed in a couple of days in general. Consequently,

Video data processing is highly suitable to adopt a cloud

computing environment, such as Apache Hadoop [1], which

conveniently parallelize the processing. In this demo, we

present a parallel video processing framework in the Apache

Hadoop cloud-computing environment.

This work is supported by the the Gyeonggi Regional Collaboration
Research Center [GRRC-KAU-2013-B02]

Apache Hadoop is the most popular big-data cloud-

computing environment, whose source code is freely acces-

sible in public. It implements a distributed fault-tolerant file

system, called HDFS (Hadoop Distributed File System) and

the MapReduce distributed processing pattern. Our video

processing framework is also based on both HDFS and

MapReduce pattern. It reads a video reel from HDFS, and

distributes the reel in the cloud for a process using MapRe-

duce pattern. To process the video, it first decompresses the

stream using modified FFmpeg library, and processes the

uncompressed image sequences with the OpenCV library to

extract essential information. Since FFmpeg and OpenCV

are in C language without a concern of Hadoop environment

in Java, extensions of the libraries were required, which

are found to be nontrivial. In our best knowledge, it is the

first extensible video-processing framework that modifies

FFmpeg library to optimize for the Hadoop environment,

even though there are a couple of video transcoding systems

in Hadoop without off-the-shelf use of FFmpeg executable

[2]–[4].

To demonstrate our framework, we implemented a face

tracking system, in which each sequence of the same per-

son’s faces in a continuous motion is collected and grouped

automatically. It can be one of basic features in facial

information extraction from surveillance video data.

The paper is organized as follows. We first introduce

the basic concepts and related work in video-related cloud

systems in Section 2. In the following section, we explain

our framework and technical challenges we met. Section

4 describes our demo system and evaluates experimental

results. We conclude our work in Section 5.

II. RELATED WORK

As mentioned earlier, there have been several video

transcoders implemented in cloud environments. X264farm

is one of the early systems, parallelizing a video encoding

job in a distributed system [5]. It divides a video into

group of pictures (GOPs) and distributes the work with

load balancing. Mohohan is the first work that employs

Hadoop and FFmpeg for a cloud video transcoder [2].

It connects multiple off-the-shelf applications to divide a

video file into GOP units, transcode the pieces and combine

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.153

305

Hadoop (Java)

 ffmpeg (C library)

HDFS API

HDFS ext.

Video data
in HDFS

GOP ext.

Video
map-reduce

Pluggable image processor

 Interface for image processor

Figure 1. Architecture of our framework; Boxes with orange (or dark)
shade is the ones that we implemented for the framework

them. Although it does not address optimizations, it was

a nice collection of applications to rapidly construct a

distributed transcoding system. Kim et al. also proposed a

cloud transcoding system based on Hadoop and FFmpeg

[4]. To use FFmpeg library in Hadoop, they use Xuggler,

Java interfaces of FFmpeg library. It provides a cloud

computing architecture that transcodes video data in a single

map-reduce application. Yang and Shen also implemented

a similar transcoding system with Hadoop and FFmpeg

[3]. Garcia et al. implemented a prototype to measure the

performance of such transcoding systems [6].

On the other hand, there are few video-processing systems

implemented. One of such efforts is HP Labs’ VideoToon

system, which cartoonizes videos in a Hadoop environment.

It uses HP’s own cartoonizing engine, and is not intended

for other video-processing extensions [7].

III. OUR FRAMEWORK

The purpose of our work is to provide a framework

to develop a video image processing cloud system. Since

FFmpeg and OpenCV are already combined in the frame-

work, developers can easily extend it with their own custom

image processing engine. Once video data is decoded into

a sequence of images by the modified FFmpeg library, each

image is passed to the image processor, possibly custom

built. Currently, image processor is supposed to use OpenCV,

the most popular image processing library, but need not

bounded to it. Since OpenCV is implemented in C and C++,

and so is FFmpeg, we made video processing interfaces in C

and C++ environment for optimizations. A lot of efforts on

our framework have been devoted to the interface between

the Java-based Hadoop subsystem and C-based FFmpeg

library. In this section, we briefly introduce each component

and such challenges.

A. Overall Architecture

In our framework, Video processing is performed at map
stage of the MapReduce pattern. At the reduce stage, the

proccessed data can be refined.

Fig. 1 illustrates the architecture of our demonstration

framework. The system has three layers: Hadoop subsystem,

Figure 2. Namenode/Datanode and JobTracker/TaskTracker

FFmpeg subsystem and the image processor from the bottom

to the top, between which the interfaces bridge. Hadoop

manages the cloud system based on the MapReduce pattern.

It decomposes the video processing job into GOP elements

and distributes them to the cloud nodes. Each GOP element

metadata is handed to the FFmpeg library. FFmpeg decodes

a GOP into a sequence of images and passes them to the

pluggable image processor one-by-one. The image processor

processes the image sequence and manufactures processed

images in structure.

B. How to access video files

To implement a video processing cloud system, the video

decoder must be able to read a video file in HDFS. There can

be a couple of ways to pass video data to the video decoder.

First, Hadoop’s MapReduce engine can read and pass the

video data to FFmpeg. Second, Hadoop can just point out

the section to decode to FFmpeg and FFmpeg directly reads

the video data from HDFS. To optimize the performance,

we chose the second option in spite that it needs an FFmpeg

extension in video I/O subsystem to allow direct access to

HDFS. The HDFS related portion of our framework is the

left half of the framework in Fig. 1.

FFmpeg extension for HDFS was required to be developed

because HDFS has only dedicated interfaces without a

support of standard file APIs. Linux FUSE package was

another option, which is a third party interface provid-

ing standard file APIs for HDFS. Since a Hadoop-based

transcoder [2], uses Linux FUSE package, we measured the

performance of the Linux FUSE package as an option for

the framework. However, we decided to extend FFmpeg for

a direct HDFS access, not using the FUSE package because

it has significant performance losses. Our extension is not

only faster than FUSE package, but also much stabler, we

found.

306

Figure 3. Splits divided by keyframe boundary near block

C. Distributed processing through MapReduce

Hadoop MapReduce, distributed processing engine in

Hadoop, is a programming model to process big data in

largely distributed computing nodes. Hadoop MapReduce

has the Master node called JobTracker, and the slaves

called TaskTracker. Their relationship is similar to the one

between the NameNode and the DataNodes in HDFS. The

relationship between NameNode, DataNodes, JobTracker,

and TaskTrackers are depicted in Fig. 2

JobTracker gets a Job, usually a large problem from a

client, and slices it into small sub-problems, each called

InputSplit. Each InputSplit is allocated to a Task-

Tracker, which consecutively performs a map function for

each entry in the split. Once a TaskTracker completes the

allocated split, an additional split is assigned, if remained.

Performance of a MapReduce job considerably depends

on how to divide a input file into InputSplits. The size

of a split is better to be smaller to maximize parallelism,

but should be larger to minimize maintenance overheads.

Consequently, it is important to find proper compromise for

the size of a split.

Notice that an InputSplit cannot scale down to a

picture frame because a frame in a video is dependent

upon other nearby frames in decoding. Since the smallest

independent decoding unit in video files is a GOP, the

smallest split unit is also a GOP. Once a GOP is assigned

to a TaskTracker as an InputSplit, it will decode the

frames in the GOP and process each image sequentially.

When deciding the size of an InputSplit, it is better to

be synchronized with a file block. Once it is synchronized,

the JobTracker can distribute the split to the node that has

the block as it can be read and processed within the node.

Otherwise, the split must be requested remotely.

In this study, we adjust each InputSplit to be closely

match with a file block. However, if each split is exactly

the same as a file block, the split’s starting point may not

accord with a GOP starting point. Since a split cannot be

finer than a GOP, a split boundary must be at a GOP

boundary. Thereby, our framework divides an InputSplit
at the GOP boundary just after the block boundary. With this

strategy, each split will closely synchronize with a file block

with minimal off-block data. As long as the JobTracker

allocates a split to TaskTrackers that have the split locally,

data-process locality can be established, and remote file

access can be minimal only for the off-block data. How to

Figure 4. Output of our face tracing demo system

divide each InputSplit is depicted in Fig. 3.

To perform such splits, the framework must be aware

of the GOP boundary positions. However, FFmpeg does

not provide APIs providing such information. Moreover,

the framework must be able to process the video from the

location in the byte precision. Hence, we extended FFmpeg

to support GOP information retrievals and byte-precision

video seek functionality to enable our design as shown in

Fig. 1.

D. Image processing in OpenCV

OpenCV is the most popular image processing library to

get numerical or meaningful information from high dimen-

sional image data in the real world. OpenCV is composed

of programing functions to process image data.

In our work, OpenCV is not a mendatory but recom-

mended image processing environment. Once a video frame

is decoded into a still image, the image is directly passed to

the image processor in C or C++ native environment. If the

Hadoop Java environment intervenes the image handover,

there must be copies of images between the native and JVM

memory spaces. Thereby, we put the image processing layer

just on top of the FFmpeg video decoding layer to optimize

performance. Besides our face-tracing demo system, other

image processing applications can be applied because it has

a pluggable architecture.

IV. FACE TRACING DEMO SYSTEM IN A VIDEO

We developed a demo application that extracts represen-

tative faces and traces continuous faces over the frames to

show the performance and practicality of our framework.

The representative faces are listed for their own sets.

The criteria of facial continuity are positions of faces and

similarity of facial contrast distributions. As illustrated in

Fig. 4, All the faces in the video are detected by the

OpenCV face detector, and the continuous faces are traced

and grouped. Because demonstration system for this demo

program is produced with web-based interface, users can

directly operate the system.

We measured the performance of the system by comparing

the processing time of a multi-core cloud system with a

single-core system.

307

Figure 5. Graph of video-processing time

Figure 6. Graph of improving performance by increasing the number of
cores

As a computing node, we employed two Mac Mini com-

puters with a 2.3GHz i7 quad-core. Since the core supports

hyper threading, we increased the number of cores to 16

logical cores, while there are only 8 physical cores. About

1GB Korean TV show was used for the measurement.

Fig. 5 and 6 show the performance results. Each graph

shows the performance when one or two computers are used

for processing. As long as the number of logical cores do

not exceed physical cores, the system manages up to 75%

of scalability. The performance losses seem to be from I/O

overhead and coarse-grained InputSplits; at the end of

process, many cores were found to be idle. Hyper threading

was found to be not very effective in our system.

V. CONCLUSION

We implemented Hadoop-based video processig frame-

work that is extensible for various video processing appli-

cations. To optimize the performance, we implemented the

HDFS extension for FFmpeg to access video data in HDFS

directly. Moreover, FFmpeg was also extended to provide

GOP-related information to hadoop to divide a video file

into appropriate splits, the unit of distributed processing.

We made a demo system that tracks faces with continuity

through frames. The demo system was built on top of Web

interface, for any user to test the system interactively. We

found that our framework shows fairly good scalability in

the performance evaluation. However, hyper threading does

not seem to help the performance much.

REFERENCES

[1] T. White, Hadoop: the definitive guide. O’Reilly, 2012.

[2] C.-H. Chen. Mohohan: An on-line video transcoding service
via apache hadoop. [Online]. Available: http://www.gwms.
com.tw/TREND HadoopinTaiwan2012/1002download/C3.pdf

[3] F. Yang and Q.-W. Shen, “Distributed video transcoding on
hadoop,” Computer Systems & Applications, vol. 11, p. 020,
2011.

[4] M. Kim, Y. Cui, S. Han, and H. Lee, “Towards efficient
design and implementation of a hadoop-based distributed video
transcoding system in cloud computing environment,” Inter-
national Journal of Multimedia and Ubiquitous Engineering,
vol. 8, no. 2, Mar. 2013.

[5] R. Wilson. x264farm. A distributed video encoder. [Online].
Available: http://omion.dyndns.org/x264farm/x264farm.html

[6] A. Garcia, H. Kalva, and B. Furht, “A study of transcoding
on cloud environments for video content delivery,” in
Proceedings of the 2010 ACM multimedia workshop on
Mobile cloud media computing, ser. MCMC ’10. New
York, NY, USA: ACM, 2010, pp. 13–18. [Online]. Available:
http://doi.acm.org/10.1145/1877953.1877959

[7] H. Labs. Video Toon. [Online]. Available: http://www.hpl.hp.
com/open innovation/cloud collaboration/cloud demo.html

[8] [Online]. Available: http://fuse.sourceforge.net

308

