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ABSTRACT
Efficient cache tag management is a primary design objec-
tive for large, in-package DRAM caches. Recently, Tagless
DRAM Caches (TDCs) have been proposed to completely
eliminate tagging structures from both on-die SRAM and
in-package DRAM, which are a major scalability bottle-
neck for future multi-gigabyte DRAM caches. However,
TDC imposes a constraint on DRAM cache block size
to be the same as OS page size (e.g., 4KB) as it takes
a unified approach to address translation and cache tag
management. Caching at a page granularity, or page-based
caching, incurs significant off-package DRAM bandwidth
waste by over-fetching blocks within a page that are not
actually used. Footprint caching is an effective solution
to this problem, which fetches only those blocks that will
likely be touched during the page’s lifetime in the DRAM
cache, referred to as the page’s footprint.

In this paper we demonstrate TDC opens up unique op-
portunities to realize efficient footprint caching with higher
prediction accuracy and a lower hardware cost than the
original footprint caching scheme. Since there are no cache
tags in TDC, the footprints of cached pages are tracked
at TLB, instead of cache tag array, to incur much lower
on-die storage overhead than the original design. Besides,
when a cached page is evicted, its footprint will be stored
in the corresponding page table entry, instead of an aux-
iliary on-die structure (i.e., Footprint History Table), to
prevent footprint thrashing among different pages, thus
yielding higher accuracy in footprint prediction. The re-
sulting design, called Footprint-augmented Tagless DRAM
Cache (F-TDC), significantly improves the bandwidth ef-
ficiency of TDC, and hence its performance and energy
efficiency. Our evaluation with 3D Through-Silicon-Via-
based in-package DRAM demonstrates an average reduc-
tion of off-package bandwidth by 32.0%, which, in turn,
improves IPC and EDP by 17.7% and 25.4%, respectively,
over the state-of-the-art TDC with no footprint caching.

1. INTRODUCTION
Die-stacked DRAM technologies have been widely em-

braced by industry as a means to overcome the long-
standing “Memory Wall” problem [1]. A typical 3D form
factor stacks 4–8 DRAM dies with an optional logic die
at the bottom [2], whose capacity ranges from hundreds of
megabytes to several gigabytes and will continue to scale
up with technology scaling [3]. Major processor vendors
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have announced their plans to integrate these technologies
into their products, including Intel [4], AMD [5], IBM [6],
Nvidia [7], and Xilinx [8].

There are proposals to architect this high-bandwidth in-
package DRAM as large, software-transparent last-level
caches [3, 9, 10, 11, 12, 13, 14, 15]. Compared to software-
managed fast main memory they have an advantage in easy
deployment without requiring any modification to the soft-
ware stack. Since the cost of cache tags easily becomes
prohibitive with large in-package DRAM, minimizing this
overhead in terms of latency, storage, and energy con-
sumption, is one of the main design challenges.

Recently, Tagless DRAM Caches (TDCs) [15] have
been proposed to completely eliminate tagging structures
from both on-die SRAM and in-package DRAM. TDC
aligns the granularity of caching with OS page size (e.g.,
4KB) and replaces the two-step address translation by
TLB (for virtual-to-physical address translation) and cache
tag array (for physical-to-cache address translation) into a
single-step process. At TLB miss the TLB miss handler
performs not only a page table walk but also cache block
allocation, and directly stores the virtual-to-cache address
mapping into the TLB. Since a TLB access immediately
returns the exact location of the requested block in the
cache, cache tags are no longer maintained. By eliminat-
ing the cache tags TDC achieves lowest hit latency and
best scalability with ever-increasing DRAM cache size.

However, TDC imposes a constraint on the DRAM
cache block size to be the same as OS page size and suffers
an over-fetching problem. Caching at a page granularity
incurs significant off-package bandwidth waste by unnec-
essarily fetching those blocks that are not actually used,
which is a common problem of page-based caches.

Footprint caching [9, 10] is an effective solution to this
over-fetching problem for page-based caches. Both Foot-
print Cache [10] and Unison Cache [9] track referenced
blocks in a cached page since it is allocated. They use this
information to fetch only the relevant subset of the 64-byte
blocks, referred to as the page’s footprint, when the page
is reallocated into the cache. Thus, they maintain a high hit
rate of page-based caching while mitigating the bandwidth
waste by not fetching blocks that will not be used.

We identify several sources of inefficiency in the orig-
inal footprint caching scheme [10], which can be effec-
tively addressed on TDC. First, footprint thrashing can oc-
cur among different pages as the footprint of an evicted
page is stored in a small Footprint History Table, which
covers only a small fraction of the working set. Second,
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the bit vectors for footprint tracking are stored in the cache
tag array, whose storage overhead is proportional to the
DRAM cache size. Finally, an in-package DRAM cache
miss is known only after the request goes through multiple
on-die cache misses to yield a relatively high miss penalty.

In this paper we propose Footprint-augmented Tagless
DRAM Cache (F-TDC), which synergistically combines
footprint caching with TDC to improve its bandwidth
efficiency. Exploiting unique opportunities offered by
TDC, F-TDC outperforms the original footprint caching
scheme [10] by alleviating its sources of inefficiency. Since
there are no cache tags in TDC, the footprints of cached
pages are tracked at TLB, instead of cache tag array, to
reduce on-die storage overhead. Besides, when a page is
evicted, its footprint will be stored in the corresponding
page table entry (PTE), instead of Footprint History Ta-
ble, to prevent footprint thrashing among different pages,
thus yielding higher prediction accuracy. Finally, F-TDC
reduces an off-package miss penalty by identifying an off-
package block miss right after a TLB access. Our evalua-
tion with 3D Through-Silicon Via (TSV)-based in-package
DRAM demonstrates an average reduction of off-package
bandwidth by 32.0%, which, in turn, improves the IPC and
EDP by 17.7% and 25.4%, respectively, over the state-of-
the-art TDC with no footprint caching.

The main contributions of this paper are summarized as
follows:

• This paper is the first to identify unique opportunities
in TDC, which enable efficient realization of foot-
print caching with higher prediction accuracy at a
lower hardware cost than the original design [10].

• A Footprint-augmented Tagless DRAM Cache (F-
TDC) is designed and implemented to capitalize on
these opportunities.

• Detailed evaluation of F-TDC with SPEC CPU 2006
and CloudSuite is provided using a cycle-level sim-
ulator to demonstrate its effectiveness in reducing
bandwidth waste and improving the performance and
energy efficiency.

2. BACKGROUND AND MOTIVATION

2.1 Tagless DRAM Cache
Existing DRAM caches can be classified into two cate-

gories based on the granularity of caching: block-based [3,
12, 13, 14] and page-based [9, 10, 11, 15]. Block-based
DRAM caches adopt conventional cache block size (e.g.,
64B) for efficient utilization of DRAM cache space and
off-package bandwidth. However, they require large stor-
age for tags; assuming an 8-byte cache tag per 64-byte
cache block, a 2GB DRAM cache requires 256MB stor-
age just for tags. It is too expensive to place such a large
SRAM array on the processor die. Therefore, block-based
caches often put the tags, together with cached data, into
in-package DRAM [3, 13], but only at the cost of an in-
crease in hit latency, which negatively affects performance.

As an alternative, page-based DRAM caches alleviate
this problem by caching at a page granularity, typically
ranging from 1–8 KB [9, 10]. Smaller tags result in lower
storage overhead and hit latency. Large block size often
leads to higher cache hit rate by exploiting spatial local-
ity. Besides, energy efficiency is improved by exploiting
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Figure 1: Organization and operations of Tagless
DRAM Cache (TDC)

row buffer locality in DRAM devices. However, while
much lower than block-based DRAM caches, the storage
requirement for tags is still significant even for page-based
caches with ever-increasing DRAM cache size. For exam-
ple, assuming 4KB pages, an 8GB DRAM cache requires
either tens of megabytes on-die SRAM [10] or hundreds
of megabytes [9] in-package DRAM storage just for tags.

Recently, Tagless DRAM Caches (TDCs) [15] have
been proposed to completely eliminate tagging structures
from both on-die SRAM and in-package DRAM. Figure 1
shows the organization and operations of TDC. At TLB
miss the TLB miss handler performs a page table walk
to fetch the page table entry (PTE). If the PTE indicates
that the page is currently not cached, the TLB miss han-
dler allocates the page into the DRAM cache. Once the
cache fill request is completed, the global inverted page ta-
ble (GIPT) is updated, which maintains cache-to-physical
address mappings (along with a pointer to the correspond-
ing PTE (PTEP)) for all cached pages. Finally, the TLB
miss handler updates both the TLB and the PTE with the
newly created virtual-to-cache address mapping, and re-
turns. Thus, an access to the memory region within the
TLB reach always hits in the cache with low hit latency
as a TLB access immediately returns the exact location
of the requested block in the cache, hence obviating the
needs to maintain cache tags. By consolidating two-step
address translation in the cache access path into a single-
step process, TDC achieves lowest hit latency by saving a
tag-checking operation.

By completely eliminating cache tag array TDC is the
most scalable caching solution known to date. However,
TDC imposes a constraint on the cache block size to be
aligned with OS page size (e.g., 4KB) and suffers an over-
fetching problem, which is common to page-based caches.

2.2 Over-fetching Problem in Tagless
DRAM Caches

Page-based caches, including Tagless DRAM Caches
(TDCs), commonly have an over-fetching problem, where
unused blocks are moved on and off the package to cause
bandwidth and capacity wastes. Figure 2 compares the
bandwidth consumption of the conventional page-based
DRAM cache running a multi-programmed workload,
with an oracle cache, which fetches only those blocks that
will be used. The results demonstrate the existence of sig-
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Figure 2: Off-package bandwidth usage for oracle and
page-based caches while running a multi-programmed
workload (MIX 1 in Table 4)
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Figure 3: Page access density for 2GB DRAM cache
with varying input size

nificant bandwidth bloat in the page-based DRAM cache,
which is more pronounced for smaller caches due to higher
cache miss rate–by up to 5× over the oracle cache.

The over-fetching problem can manifest even for a large
DRAM cache if the working set outgrows the cache size.
For example, Figure 3 shows the page access density of
Memcached in CloudSuite [16] with a 2GB DRAM cache.
(Refer to Section 4 for the details of simulation methodol-
ogy.) The access density of a cached page is defined as
the number of referenced blocks during the page’s life-
time in the cache from allocation to eviction [17]. When
the input is relatively small (with a 10× input scaling fac-
tor), the working set fits in the cache, and ample spatial
locality is observed in cached pages. However, as the in-
put size scales up, the page access density quickly drops
to make a majority of blocks not used in the cache. With
a 70× input scaling factor, about 40% of cached pages
are sparse with eight or fewer blocks referenced (out of
64 blocks) since frequent capacity misses shorten the life-
time of a cached page, often shorter than the page’s reuse
distance. These sparse pages cause significant bandwidth
and capacity wastes in page-based DRAM caches. In short,
this over-fetching problem can still exist even for multi-
gigabyte DRAM caches if applications have huge memory
footprints (e.g., in-memory database [18], genome assem-
blies [19]).

To address this problem, Jevdjic et al. have recently pro-
posed Footprint Cache [9, 10] to improve the bandwidth
efficiency of page-based DRAM caches. Footprint Cache
uses page-sized allocation units, but identifies and fetches

only those cache blocks within a page that will likely be
used during the page’s lifetime. Footprint Cache effec-
tively reduces bandwidth bloat and improves the perfor-
mance and energy efficiency of page-based DRAM caches.

However, the idea of footprint caching is not readily
applicable to TDC since Footprint Cache extends cache
tags to track the footprint of a cached page, while TDC
eliminates all tagging structures. Besides, there are several
sources of inefficiency in the original caching scheme. For
example, an 8GB Footprint Cache requires either a 48MB
SRAM tag array [10] or up to 512MB DRAM storage in
package [9], along with several auxiliary on-die structures,
such as footprint history table, singleton table, and way
predictor. This paper proposes Footprint-augmented Tag-
less DRAM Cache (F-TDC), which integrates a low-cost
footprint caching scheme into TDC, to yield higher predic-
tion accuracy and scalability than the original design.

3. FOOTPRINT-AUGMENTED TAGLESS
DRAM CACHE (F-TDC)

3.1 Overview
F-TDC builds on Tagless DRAM Cache (TDC) [15] to

employ cache-map TLB (cTLB), which replaces the con-
ventional TLB to store virtual-to-cache, instead of virtual-
to-physical, address mappings. At a TLB miss, the TLB
miss handler performs not only the page table walk but
also cache block allocation into the DRAM cache, and up-
dates both cTLB and page table with the virtual-to-cache
mapping.

For footprint tracking and prediction, both cTLB and
page table are augmented with the following bit vectors:

• Valid bits: Valid bits indicate which blocks in the
page are currently valid in the DRAM cache. When
a new block is fetched, the corresponding valid bit is
set to one. If the page is evicted from the cache, all
of its valid bits are reset to zero.

• Reference bits: Reference bits indicate which
blocks in the page have been accessed since the page
is allocated into the DRAM cache. When the page
is reallocated into the cache, these bits are used as
fetching hints as they represent the page’s footprint.
Upon the completion of cache fill they are reset to
zero.

F-TDC decouples cache fill unit from cache allocation
unit. This decoupling introduces a new type of cache miss,
called block miss, which occurs when the page is already
allocated but the requested block is not filled yet (i.e., its
valid bit is zero). Note that there is only one type of cache
miss in the original TDC, which we call page miss; TDC
guarantees that, once a page is allocated, all of its blocks
are valid.

Figure 4 shows the flow chart of the memory access path
of F-TDC, with the modified parts from the original TDC
shaded in gray. The operations of the memory access path
in F-TDC are sketched as follows:

• Upon a TLB miss, the TLB miss handler performs a
page table walk to fetch the page table entry (PTE).
If the page being accessed is already allocated in the
cache, the TLB miss handler simply returns the PTE
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Figure 4: Flow chart of F-TDC operations

to update the cTLB. If not cached, it allocates a free
page in the cache, generates a cache fill request to
copy the requested page into the cache. Note that,
only those blocks whose reference bits are set to one
(i.e., the page’s predicted footprint) are copied over
to reduce off-package bandwidth consumption. The
global inverted page table (GIPT), which maintains
cache-to-physical mappings for all cached pages, is
also updated with the new entry. Once completed,
the TLB miss handler replaces the target PTE with
the new virtual-to-cache address mapping and re-
turns the PTE. The reference bits and valid bits of the
victim TLB entry are written back to its correspond-
ing PTE asynchronously through write-back queue
(WBQ).

• If the requested page misses in the cTLB but hits
in the DRAM cache (i.e., victim hit), the TLB miss
handler updates the cTLB with the virtual-to-cache
address mapping obtained from the corresponding
PTE, along with its valid and reference bit vectors.

• At a TLB hit, the valid bit of the requested block
is checked. If the block is valid, the memory access
percolates through the memory hierarchy (e.g., L1,
L2 and DRAM caches) and is serviced in package.
The reference bit of the requested block is set to track
the page’s footprint.

• If the valid bit is not set (i.e., block miss), the physi-
cal address of the missed block is obtained by look-
ing up the GIPT. Then, the requested block is fetched
from off-package DRAM, and both valid bit and ref-
erence bit of the requested block are updated.

• Cache block eviction is performed asynchronously
in the same way as the original TDC [15]. To take
the write-back overhead off from the cache access
path, F-TDC has a small number of free blocks al-
ways available. The PTE of an evicted cache block
is updated to restore the original virtual-to-physical
address mapping by consulting the GIPT. The valid
bits of the corresponding PTE are also cleared.

3.2 Overall Structure
Figure 5 shows the overall structure of the proposed

F-TDC and data flows among components. There are
three major hardware components of F-TDC: cTLB (with
WBQ), page table, and GIPT. Among them, GIPT is not
modified from TDC, and the only modification for the page
table is inclusion of the two bit vectors (valid and reference
bits) as explained before. Hence, we focus on discussion of
cTLB and WBQ in this section.

In addition to maintaining virtual-to-cache address map-
pings, cTLB also tracks a page’s footprint. For this a TLB
entry is augmented with valid bits and reference bits. For
every memory access, the corresponding valid bit is tested
and reference bit is updated. A block miss can be detected
by a simple combinational logic as shown in Figure 6.

When a TLB entry is evicted, its reference and valid bits
should be spilled into the corresponding PTE, which intro-
duces a new writeback path from cTLB to page table. To
take the writeback path off from the critical path of TLB
miss handling, we introduce a simple TLB WBQ, which
buffers writeback commands. The entries in WBQ are
written back asynchronously. By using WBQ, the write-
back path adds negligible overhead to the TLB miss han-
dling latency.

The storage cost of the two bit vectors is very low.
Assuming 32 entries for L1 TLBs (both instruction and
data TLBs) and 512 entries for unified L2 TLBs, the stor-
age overhead is just 1.125KB per core with 8-bit refer-
ence/valid vectors (our default). Refer to Section 3.4 for
the selection of bit vector width and Section 5.1 for evalu-
ation results. Note that this is the only extra space overhead
introduced by F-TDC, which is highly scalable with ever-
increasing DRAM size.

Finally, an update to the same reference and valid bits
may occur in multiple cores. This may cause a coherence
problem of those bits. Actually, the inconsistency of refer-
ence bits across cores causes no problem as the reference
bit vectors can be merged when they are written back to
the page table. However, the inconsistency of valid bits is
problematic for a block being fetched by multiple cores
redundantly. If such a block is modified by one or more
cores, its value might get corrupted. To address this prob-
lem, F-TDC adopts a recent proposal to exploit a cache
coherence network for keeping TLBs coherent via broad-
casting [20]. Note that a TLB update command is issued
only at a block miss, which relatively rarely occurs, hence
incurring negligible bandwidth pollution in the cache co-
herence network.
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Figure 5: The overall structure of F-TDC
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3.3 F-TDC Operations
To demonstrate the cache operations of F-TDC, we walk

through all cache access scenarios using a running exam-
ple. Figure 7 depicts a snapshot of the initial state for the
running example, and Figure 8 shows the new state after
each operation completes. The dark-shaded blocks indi-
cate those components which are just updated. We use a
history-based algorithm for footprint prediction. The refer-
ence bit vector of each page records touched cache blocks
during the lifetime of the page in the DRAM cache. When
a TLB entry is evicted, its bit vector is spilled into the cor-
responding PTE and used as prefetching hints at realloca-
tion of the page as it represents the page’s footprint.

Case 1: TLB Miss & Cache Miss (Page Miss)
Figure 8(a) depicts how F-TDC operates when a memory
access misses at both the cTLB and the cache. Assuming
the initial state as shown in Figure 7, a TLB access for VA2
causes a TLB miss as an entry for VA2 does not exist in the
cTLB �. To serve the TLB miss, the TLB miss handler al-
locates a TLB entry for VA2. In case that cTLB is full,
it evicts an existing TLB entry into WBQ (e.g., the TLB
entry for VA1) �. WBQ later writes back the bit vectors
of the evicted TLB entry into the page table in an asyn-
chronous manner. Meanwhile, the TLB page miss handler
performs a conventional page table walk to fetch the PTE
for VA2 �. The fetched PTE indicates that the correspond-
ing page is not currently cached (with a VA2-to-PA2 map-
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Figure 7: Initial state of F-TDC

ping); then the TLB miss handler generates a cache fill
request to selectively fetch the page’s footprint from off-
package DRAM into the in-package DRAM cache using
the reference bits �. Once the cache fill request is com-
pleted, the TLB miss handler updates the PTE for VA2
to store the VA2-to-CA2 mapping and backs up the origi-
nal VA2-to-PA2 mapping at GIPT �. Finally, the reference
bits of the page are copied over into the valid bit vector of
the TLB entry along with the VA2-to-CA2 mapping. The
reference bit vector is cleared to track the page’s footprint
during the page’s sojourn time in the cache �.

Case 2: TLB Hit & Cache Hit
When a memory access hits in both cTLB and the cache
as shown in Figure 8(b), F-TDC achieves the lowest ac-
cess latency by requiring neither a page table walk nor
a TLB miss handling. As the first step, F-TDC retrieves
the TLB entry for the requested memory address from
cTLB �. Then, it marks the corresponding reference bit
to one in cTLB and checks the corresponding valid bit �.
The reference bit vector serves as the page’s footprint to be
used when the page is reallocated. Note that both read and
write accesses update the reference bit as reference bits
track which blocks of a page have been accessed while
the page resides in the cache. Once the validity of the re-
quested block is confirmed, the cache address (CA2 in this
example) is used to access the block �.

241



CA3 
PTEP PA2 CA2 
PTEP PA1 CA1 
PTEP CA0 CA0 

CA3 
PTEP PA2 CA2 
PTEP PA1 CA1 
PTEP PA0 CA0 

Bit vectors VA1 

CA0 
CA1 
CA2 

PTEP 
PTEP 
PTEP 

PA0 
PA1 
PA2 

CA3 

TLB miss 1 

Data (4KB) 

Die-stacked 
DRAM cache 

CA0 VA0 1000 1001 
CA2 VA2 0001 0011 

cTLB Reference Valid 

WBQ 

GIPT CA0 VA0 0000 1001 
CA1 VA1 0100 1100 

Page Table 

CA2 VA2 0000 0011 
PA3 VA3 0101 0000 

L1/L2 
Cache 

VA2 

Insert to WBQ  2 

VA1 

Page table walk 3 

PA2 

Data (4KB) 

Allocate blocks  
with reference bits 

4 

PTE & GIPT update 5 

Update TLB 6 VA2 

(a) Case 1: TLB miss & cache miss (page miss)  

Die-stacked 
DRAM 

CA0 VA0 1000 1001 
CA2 VA2 0011 0011 

cTLB 

WBQ 

GIPT CA0 VA0 0000 1001 
CA1 VA1 0100 1100 

Page Table 

CA2 VA2 0000 0011 
PA3 VA3 0101 

L1/L2 
Cache 

VA2 

Data (4KB) 

(b) Case 2: TLB hit & cache hit 

CA2 

0000 

TLB hit 1 CA2 

CA2 

Reference bits update 
 & check two bits 

2 

(c) Case 3: TLB hit & cache miss (block miss)  

Die-stacked 
DRAM cache 

CA2 VA2 0111 0111 
CA1 VA1 0100 1100 

cTLB 

WBQ 

GIPT CA0 VA0 1000 1001 
CA1 VA1 0100 1100 

Page Table 

CA2 VA2 0000 0111 
PA3 VA3 0101 

L1/L2 
Cache 

(d) Case 4: TLB miss & cache hit (victim hit) 

0000 

If hit 3 

Die-stacked 
DRAM cache 

CA0 VA0 1000 1001 
CA2 VA2 0111 0111 

cTLB 

WBQ 

PTEP 
PTEP 
PTEP 

GIPT CA0 VA0 0000 1001 
CA1 VA1 0100 1100 

Page Table 

CA2 VA2 0000 0111 
PA3 VA3 0101 

PA0 CA0 
PA1 CA1 
PA2 CA2 

L1/L2 
Cache 

VA2 

Data (4KB) 

0000 

TLB hit 1 

CA2 

Reference bits update 
 & If miss 

2 

Data (4KB) PA2 

Allocate blocks  4 

GIPT walk 3 

Update valid bits 5 

TLB miss 1 

VA1 

t 

VA0 Bit vectors 

VA1 

2 Page table walk 

Insert to WBQ  3 

VA1 
Update TLB 4 

PA4 VA4 0110 0000 PA4 VA4 0110 0000 

PA4 VA4 0110 0000 CA3 PA4 VA4 0110 0000 

Reference Valid 

Reference Valid 

Reference Valid 

Reference Valid 

Reference Valid 

Reference Valid 

Reference Valid 

0001 0010 

0100 0100 

Data (4KB) CA1 

CA1 

Figure 8: Four operations of F-TDC

Case 3: TLB Hit & Cache Miss (Block Miss)
The third case, in which a memory request hits in the cTLB
but misses in the cache, can occur due to a footprint mis-
prediction. Figure 8(c) shows how F-TDC handles such a
case. Once a memory access to VA2 hits in the cTLB �,
the corresponding reference bit in the TLB entry is updated
and the valid bit is checked �. Since the requested block
is not in the cache (i.e., valid bit is zero), the TLB miss
handler looks up the GIPT to retrieve PA2, the physical
address of the requested page �. The cache fill unit uses
this address to copy the requested block into the DRAM
cache � and updates the corresponding valid bit to one �.
Then the memory request is retried to hit in the cache.

Case 4: TLB Miss & Cache Hit (Victim Hit)
A victim hit occurs when a memory access misses in the
cTLB but hits in the cache. This case happens as F-TDC
uses the in-package DRAM region beyond the TLB reach
as victim cache. Figure 8(d) illustrates the operations of F-
TDC for such memory accesses. When a TLB miss occurs
for VA1 �, the TLB miss handler performs a page table
walk to fetch the requested PTE � along with an optional
eviction of a TLB entry to WBQ �. Once the VA0-to-CA0
mapping is restored in the cTLB �, the request is retried to
hit in the cache since the requested block already resides in
the DRAM cache. Note that this process does not involve
any latency penalty except for TLB miss penalty, which
must be paid to handle the TLB miss, anyway.

In summary, Table 1 lists the four memory access op-
erations in F-TDC with their latency implications. F-TDC
significantly reduces hit latency at the cost of a slight in-
crease in miss penalty for both page and block misses.

cTLB DRAM cache Descriptions

Hit Hit
Cache hit.

Zero latency penalty.

Hit Miss
Block miss.

Costs GIPT access time and
off-package block fill time.

Miss Hit
In-package victim hit.

Zero latency penalty (except for
TLB miss penalty).

Miss Miss
Off-package cache miss.

Costs cache fill and
GIPT update latency.

Table 1: Four possible cases for a memory access

3.4 Selection of Bit Vector Width
Careful selection of the width of reference and valid bits

is important because it affects the system behavior in var-
ious ways. The width determines the granularity of data
movement. In F-TDC, the cache allocation unit is aligned
to the OS page size (e.g., 4KB page). Hence, if the bit
width is 8, each bit in the reference/valid bits represent
whether 8 adjacent cache blocks (or 512 bytes of data)
are referenced/valid in F-TDC. If more bits are used, data
will be moved at a finer granularity to mitigate the over-
fetching problem at the cost of a lower hit rate. If fewer
bits are used, data will be moved at a coarser granularity to
waste bandwidth, but the cache hit rate will be improved
due to the spatial locality in block accesses.

Another factor affected by the bit width selection is
whether the two bit vectors can be packed in a PTE. Since
our scheme does not maintain either SRAM tags or foot-
print history table, both bit vectors should be spilled into
the PTE when a TLB entry is evicted. Wide bit vectors
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Component Parameters
CPU Out-of-order, 4 cores, 3GHz
L1 TLB 32I/32D entries per core
L2 TLB 512 entries per core
L1 cache 4-way, 32KB I-cache, 32KB D-cache,

64B line, 2 cycles
L2 cache 16-way, 2MB shared cache per core,

64B line, 6 cycles
SRAM-tag Array 16-way, 256K entries

In-package DRAM (128∼ 512MB)
Bus frequency 1.6GHz (DDR 3.2GHz)
Channel and Rank 1 channel, 2 ranks
Bank 16 banks per rank
Bus width 128 bits per channel

Off-package DRAM (8GB)
Bus frequency 800MHz (DDR 1.6GHz)
Channel and Rank 1 channel, 2 ranks
Bank 64 banks per rank
Bus width 64 bits per channel

Table 2: Architectural parameters

Parameter
In- Off-

package package
DRAM DRAM

I/O energy 2.4pJ/b 20pJ/b
RD or WR energy without I/O 4pJ/b 13pJ/b
ACT+PRE energy (4KB page) 15nJ 15nJ
Activate to read delay (tRCD) 8ns 14ns
Read to first data delay (tAA) 10ns 14ns
Activate to precharge delay (tRAS) 22ns 35ns
Precharge command period (tRP) 14ns 14ns

Table 3: Parameters for 3D in-package DRAM and off-
package DRAM devices (adapted from [22])

cannot be packed in a PTE and require additional memory
space.

By default F-TDC uses 8 bits for each bit vector for two
reasons. First, the bit width sensitivity test reveals that it is
a choice that balances prediction accuracy and bandwidth
waste (see details in Section 5.1). Second, 16 bits of both
vectors can be packed in a PTE practically. In many 64-
bit CPU architectures, the width of each PTE is 64 bits
but part of the bits are used for virtual to physical address
translation. For example, a recent Intel 64-bit processor [4]
supports 48 bits virtual to 46 bits physical address transla-
tion but each PTE is of size 64 bits. Accordingly, 18 most
significant bits in each PTE are unused, and 16 bits for
the valid and reference bit vectors can be packed in a PTE
without requiring extra memory space.

4. EXPERIMENTAL SETUP
We use McSimA+ simulator [21] to evaluate the per-

formance and energy efficiency of F-TDC. Our system
model consists of four out-of-order CPU cores, an in-
package DRAM cache, and an 8GB off-package DRAM-
based main memory. The in-package DRAM cache serves
as the L3 cache, which is directly connected to the CPU
die with TSV channels. Three different cache sizes are
considered—128MB, 256MB, and 512MB. We configure
the in-package DRAM to have 4× larger bandwidth than
the off-package DDR3 DRAM. Table 2 summarizes the
architectural parameters used for evaluation.

We extract the timing and power of the CPU cores
and SRAM-based caches using McPAT [23] and those of

Name Composition
MIX1 milc, leslie3d, omnetpp, sphinx3
MIX2 milc, leslie3d, soplex, omnetpp
MIX3 milc, soplex, GemsFDTD, omnetpp
MIX4 soplex, GemsFDTD, lbm, omnetpp
MIX5 mcf, leslie3d, lbm, sphinx3
MIX6 mcf, leslie3d, GemsFDTD, omnetpp

Table 4: Composition of multi-programmed workloads
derived from SPEC CPU 2006

Application # Memory Total # Memory
Accesses Instructions Footprint

Data analytics
2 billion 29 billion 0.68GB

(MapReduce)
Data caching

2 billion 38 billion 2.15GB
(Memcached)

Graph analytics
2 billion 23 billion 1.3GB

(Tunkrank)
Media Streaming 2 billion 28 billion 3.71GB

Table 5: Details of the multi-threaded workloads col-
lected from CloudSuite [16]

the DRAM devices using a modified version of CACTI-
3DD [24]. We adapt the parameters from recent work [22].
We recompute the I/O energy for accessing memory chan-
nels to be 2.4pJ/b (instead of 4pJ/b in [22]) as we re-
place silicon interposers with TSV bumps. Table 3 lists
the detailed timing and power parameters used for both
in-package and off-package DRAM.

We use six multi-programmed workloads and four
multi-threaded workloads for evaluation. To construct the
multi-programmed workloads, we first collect the 11 most
memory-intensive benchmarks from SPEC CPU 2006 by
measuring misses per kilo instructions (MPKI). Then, for
each memory-bound benchmark, we identify the four most
representative program slices using Simpoint [25], each
of which has 100 million instructions. Multi-programmed
workloads are created by randomly composing four out of
those 11 memory-bound benchmarks. Table 4 summarizes
the six multi-programmed workloads.

For the multi-threaded workloads, we take four Cloud-
Suite benchmarks with large memory footprints [16] that
run on our simulation framework without an error. We use
memory access traces [10] collected from a modified ver-
sion of QEMU (Version 2.4.0) [26]. For each workload,
we extract a trace of 2 billion memory reference instruc-
tions after initialization to capture realistic behaviors of the
workload. The details of the four benchmarks are summa-
rized in Table 5.

We compare the following three DRAM cache designs:

• Baseline Tagless DRAM Cache (TDC) models a
page-based DRAM cache, which uses 4KB pages for
the unit of both allocation and cache fill. Due to data
movement at a coarse granularity, the baseline TDC
suffers significant bandwidth waste.

• Block-level Fetching without Footprint (Block-
Fetching) is a simplified version of F-TDC for which
a DRAM cache block is allocated at an OS page
granularity (i.e., 4KB) but filled at a L1/L2 cache
block granularity (i.e., 64 bytes). Footprint caching
is disabled. This design minimizes off-package band-
width waste but shows a poor DRAM cache hit rate
for not exploiting spatial locality within a page.
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Figure 9: IPC and EDP of the three cache designs. The numbers are normalized to the block-granularity caching
scheme (Block-Caching) with 128MB in-package DRAM.

• Footprint-Augmented Tagless DRAM Cache (F-
TDC) is our proposed DRAM cache design. Ini-
tially, F-TDC fetches all blocks for a first-touched
page. The allocation unit (4KB) and cache fill unit
(8 64-byte blocks by default) are decoupled, and the
footprint prediction and prefetching are applied. This
cache minimizes bandwidth waste while maintaining
a high cache hit rate.

5. EVALUATION

5.1 Multi-programmed Workloads
We first evaluate F-TDC using multi-programmed

workloads. Due to cache contentions among four concur-
rent processes, DRAM cache pressure is significantly am-
plified compared to single-programmed workloads. Since
F-TDC aims to improve system performance especially for
workloads with large memory footprints (i.e., much larger
than DRAM cache size), we use multi-programmed work-
loads not only for IPC and EDP measurement but also for
comparison against Footprint Cache [10] as well as sensi-
tivity analysis.
IPC and EDP. Figure 9 shows the normalized IPC and
EDP of the three cache designs explained in Section 4:
Block-Fetching, TDC, and F-TDC. Both TDC and F-TDC
generally achieve higher performance than Block-Fetching
by better exploiting spatial locality within a page. When
the cache size is small (e.g., 128MB), F-TDC significantly
outperforms TDC due to higher off-package bandwidth ef-
ficiency. That is, F-TDC achieves average IPC improve-
ments by 36.4%, 14.7%, and 4.2%, over TDC, for 128MB,
256MB, and 512MB DRAM caches, respectively. As for
energy-delay product (EDP), F-TDC lowers the EDP by
56.9%, 27.0%, and 10.6%, respectively, over TDC. Since
a large number of unnecessary off-package memory re-
quests are filtered, fewer blocks are fetched at a cache
miss, and a memory request experiences shorter queueing
delay at the memory controller. This, in turn, leads to sig-

Memory type Footprint Cache F-TDC
On-die SRAM 1.58MB + 144KB 4.5KB

Off-package DRAM 0 0.64MB

Table 6: Storage overhead of Footprint Cache [10] and
F-TDC for a 256MB DRAM cache

nificantly lower L3 access latency and energy consump-
tion. We expect the performance gap between F-TDC and
TDC to widen as the working set size increases as the over-
fetching problem becomes more pronounced. In summary,
F-TDC significantly outperforms the other two designs.
Off-Package DRAM Bandwidth. Figure 10 quantifies
the amount of off-package DRAM bandwidth reduction
by F-TDC, compared to TDC, for three different cache
sizes. The results show that F-TDC reduces the band-
width consumption of TDC by 32.0% on average by ef-
ficient footprint caching. F-TDC consistently consumes
less off-package DRAM bandwidth than TDC regardless
of the cache size. Again, the bandwidth gap widens for
smaller cache size, larger footprint, or both. Note that TDC
and F-TDC consume a comparable amount of off-package
DRAM bandwidth when running MIX1 with a 512MB
cache because the working set of MIX1 fits in the cache.
Average L3 Latency. Figure 11 shows the average L3
cache latency of both TDC and F-TDC with varying cache
sizes. The latencies are normalized to that of F-TDC with
512MB in-package DRAM, which yields the lowest num-
ber. As the in-package DRAM size decreases (towards
128MB), we observe a rapid increase in TDC’s average L3
latency due to frequent page replacement, which causes a
lot of bandwidth pollution. In contrast, F-TDC experiences
much more gradual increases in latency as it transfers only
the useful blocks of a page between in-package and off-
package DRAM. The reduced off-package DRAM traffic
results in about 40% reduction of the average L3 access la-
tency for F-TDC, compared to TDC, for a 128MB DRAM
cache.
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Figure 10: Off-package DRAM bandwidth consumption of TDC and F-TDC.
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Figure 11: Average L3 latency of TDC and F-TDC, normalized to that of F-TDC with 512MB in-package DRAM.
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Figure 12: Cache hit rate of the original Footprint
Cache [10] and F-TDC

Comparison against Footprint Cache [10]. We compare
F-TDC against the original Footprint Cache for storage
overhead and cache hit rate. Table 6 summarizes the stor-
age overhead of F-TDC and Footprint Cache [10] for a
256MB DRAM cache. Our scheme requires only 4.5KB
of additional on-die SRAM space, which is used to aug-
ment cTLB with reference and valid bit vectors. In con-
trast, Footprint Cache requires 1.58MB storage for cache
tags and 144KB for a 16K-entry Footprint History Ta-
ble (FHT). The hardware cost of F-TDC is much lower
(i.e., less than 0.3% of that of Footprint Cache) as F-TDC
eliminates cache tags with tagless caching and exploits
PTEs to maintain footprints. F-TDC also requires 0.64MB
of off-package DRAM storage for GIPT, which is much
cheaper than both on-die SRAM and in-package DRAM.
In summary, F-TDC is not only more scalable to the size
of DRAM cache but also more energy-efficient than Foot-
print Cache with a minimal increase in chip size.

Figure 12 shows the benefit of tracking all pages’ foot-
prints in PTEs (F-TDC) compared to the FHT of limited
size (Footprint Cache). To emulate FHT, we limit the max-
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Figure 13: Off-package DRAM bandwidth usage, IPC,
and cache miss rate of F-TDC with varying bit vec-
tor width. All numbers are normalized to TDC without
footprint caching (0-bit vectors).

imum number of tracked footprints to a finite number,
ranging from 256 to 32K, on F-TDC. Without such a lim-
itation F-TDC achieves significantly higher cache hit rate
by maintaining more accurate per-page footprints. By lift-
ing this limitation (labeled “This work” in Figure 12) F-
TDC achieves about 4% higher cache hit rate than the one
tracking the footprints of up to 32K pages.
Sensitivity Analysis with Footprint Granularity. An im-
portant design choice of F-TDC is the footprint bit vector
width (i.e., the number of bits in each reference/valid bit
vector). Using too wide bit vectors reduces the cache hit
rate of F-TDC for not exploiting spatial locality. In con-
trary, too narrow bit vectors make footprint caching less ef-
fective as F-TDC behaves like page-based DRAM caches
which suffer from the over-fetching problem. Thus, we
perform a sensitivity analysis to quantify the tradeoffs in
selecting an optimal bit vector width.

Figure 13 shows how the off-package DRAM band-
width usage, IPC, and cache miss rate change with vary-
ing bit vector width. As we increase the number of refer-
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Figure 14: Average L3 latency of TDC and F-TDC
with multi-threaded workloads, normalized to that of
F-TDC with 512MB in-package DRAM.

ence and valid bits, we observe an increase in the cache
miss rate and a decrease in the off-package DRAM band-
width usage. This means that we can control the bit vec-
tor width to find a sweet spot between block-based caches
(with wide bit vectors) and page-based caches (with nar-
row bit vectors) to take the best of both. Our evaluation
demonstrates that the highest IPC improvement of 18.7%
is achieved with 8-bit vectors for both reference and valid
bits. Therefore, we choose the width of 8 bits as default.

5.2 Multi-threaded Workloads
To evaluate how effective F-TDC is with real-world

data-intensive workloads, we now compare TDC and F-
TDC using four multi-threaded workloads taken from
CloudSuite [16]. Unlike multi-programmed workloads, we
use a trace of memory reference instructions for these
workloads instead of all instructions. It is because it takes
multiple tens of billions of instructions to capture a work-
ing set whose size is larger than the DRAM cache size as
shown in Table 5. It is infeasible to perform detailed mi-
croarchitectural simulation with so many instructions for
every measurement. Thus, we use a memory access trace
with 2 billion load/store instructions for each application.

Figure 14 compares the average L3 latency of TDC and
F-TDC. F-TDC significantly reduces TDC’s average L3
latency by 62%, 49%, and 36% on average, for 128MB,
256MB, and 512MB caches, respectively. Furthermore,
the L3 access latency increases more rapidly for TDC
than F-TDC as the cache size decreases, because the over-
fetching problem is more pronounced for the former. This
result hints that F-TDC can bring significant performance
benefits to emerging data-intensive big data workloads,
which feature huge working sets.

6. DISCUSSION
Shared page support. When a page is shared by multiple
page tables (i.e., in multiple process scenarios), a page can
be cached at different locations, thereby causing a page
aliasing problem [15]. The original TDC suggests several
solutions to the problem: (1) updating all PTEs to keep
them mapped to the same cache address; (2) disabling
caching of a shared page; (3) tracking PA-to-CA mappings
in an auxiliary structure to prevent a page from being lo-
cated in multiple locations. In F-TDC, the three solutions
can also be applied. However, the valid bit vector coher-

ence (explained in Section 3.2) should be extended to make
valid bit vectors in different TLB entries coherent. The re-
cent work on maintaining TLB coherence [20] identifies
the same TLB entries on different cores by using PID and
virtual address as the key. However, to support a shared
page in F-TDC, the cache address should also be used to
correctly identify multiple TLB entries for a shared page.
Superpage support in F-TDC Unlike tagged DRAM
caches, which decouple OS page size and DRAM cache
block size, TDC can exacerbate the over-fetching prob-
lem when a superpage is used [15]. Footprint caching
can, however, alleviate this problem. Using footprints, only
a necessary subset of blocks within a superpage can be
cached. Nevertheless, if there is a small set of hot sub-
pages within a superpage, a large amount of cache space
can be wasted. One workaround is to split a superpage into
smaller pages. The hierarchical page table structure facili-
tates this breakdown [15].
GIPT cache for reducing cache block miss penalty. In
F-TDC, upon a block miss, the TLB miss handler should
look up the GIPT to obtain the physical address of the re-
quested block. This requires a long-latency DRAM access
to increase block miss penalty. One workaround to allevi-
ate this overhead is to use a GIPT cache, which is an on-
die SRAM cache specialized to cache recently referenced
GIPT entries. Especially for workloads with a relatively
small set of hot pages the GIPT cache can be an effective
solution to mitigate block miss penalty.

7. RELATED WORK
The overhead of cache tags in terms of latency, storage,

and energy consumption, is a primary scalability bottle-
neck for future multi-gigabyte DRAM caches. To address
this problem, caching at a page granularity, or page-based
caching, has been actively investigated. CHOP [11] im-
proves the efficiency of a page-based cache by caching
hot pages only. Lee et al. [15] propose Tagless DRAM
Caches (TDCs), which effectively eliminate tagging struc-
tures from both on-die SRAM and in-package DRAM. The
key idea is to align the granularity of caching with OS
page size and consolidate the two-step address translation
by TLB and cache tag array into a single-step process by
cache-map TLB (cTLB). Thus, TDCs achieves the lowest
hit latency and best scalability known to date.

Unfortunately, page-based DRAM caches suffer an
over-fetching problem, which wastes off-package DRAM
bandwidth by fetching unused data. To reduce such waste,
Footprint Cache [10] and Unison Cache [9] track which
blocks in a page have been accessed while the page resides
in the cache, referred to as the page’s footprint, and asso-
ciate the footprint with the corresponding program counter.
At a cache miss, the footprint is looked up to selectively
fetch only those blocks that are likely to be used in the fu-
ture. Bi-Modal Cache [27] uses two different caching gran-
ularities (e.g., 512B and 64B) at the same time. It prevents
fetching unused data from off-package DRAM by caching
at the finer granularity for data with low spatial locality.
These mechanisms effectively reduce off-package band-
width waste; however, they maintain cache tags, which can
incur significant cost. In contrast, F-TDC exploits existing
data structures in TDCs to reduce bandwidth waste effec-
tively with a minimal hardware cost, while preserving the
scalability benefit of TDCs.
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Recently, extended TLB (eTLB) has been proposed for
TagLess Cache (TLC) [28] and Direct-to-Data (D2D) [29]
cache, which keep way index for cached blocks in a TLB.
Similar to F-TDC a TLB lookup returns the exact loca-
tion of the requested block in the cache. However, both
target conventional on-die L1/L2 caches and do not ad-
dress unique design challenges or leverage opportunities
with die-stacked DRAM caches.

Alternatives to page-based DRAM caches include
block-based DRAM caches [12, 14]. Although free of
the over-fetching problem, block-based caches have much
greater overhead with cache tags due to their fine-grained
caching, and reducing this overhead is the primary design
objective for them. Loh-Hill Cache [3] stores both tags
and cache blocks in the same DRAM row, making a sin-
gle row buffer open sufficient to serve both a tag access
and the subsequent block access. Sim et al. [30] reduce
the implementation cost of Loh-Hill Cache by introduc-
ing a multi-level cache hit/miss predictor. Like Loh-Hill
Cache, Alloy Cache [13] also stores tags and their blocks
in the same DRAM row, but collocates a tag and the cor-
responding block to further reduce the cost of a tag-and-
block access to be a single-burst latency. ATCache [31]
aims to accelerate tag accesses by employing an SRAM-
based tag cache, which caches recently-accessed tags. Un-
fortunately, the inherent tagging overhead of block-based
DRAM caches easily becomes a scalability bottleneck for
future multi-gigabyte DRAM caches.

Chou et al. find that even block-based DRAM caches
suffer from significant DRAM bandwidth pollution from
secondary cache operations (other than tag and data
accesses, or the primary operations) [32]. To dedicate
more bandwidth to these primary operations, they pro-
pose Bandwidth Efficient ARchitecture (BEAR), which
reduces the bandwidth consumption of cache fills, write-
back probes, and miss probes. While BEAR focuses on
achieving higher in-package DRAM bandwidth efficiency,
F-TDC aims to minimize off-package DRAM bandwidth
waste via efficient footprint caching.

There are proposals to use in-package DRAM not as
caches but as part-of-memory to expand the main memory
size. In such cases, it is important to efficiently migrate
data between fast-but-small in-package DRAM and large-
but-slow off-package DRAM as the placement of data can
has significant impact on performance. Sim et al. [33]
propose a hardware-only approach, which introduces an-
other level of address translation from physical addresses
into DRAM addresses. This approach does not require OS
modifications as the hardware swaps OS pages between
the fast and slow DRAM under the hood. In contrast,
Meswani et al. [34] propose a hardware/software coopera-
tive approach, which migrates hot OS pages. They extend
TLB to measure a page’s hotness and make OS not only
determine the page’s placement using this information but
also perform page migrations if necessary. Chou et al. [35]
propose to use in-package DRAM as both a DRAM cache
and part-of-memory by migrating data between in-package
and off-package DRAMs upon a cache miss.

8. CONCLUSION
This paper introduces Footprint-augmented Tagless

DRAM Cache (F-TDC), which synergistically inte-
grates footprint caching into the Tagless DRAM Cache

(TDC) [15]. Exploiting unique opportunities offered by
TDC, F-TDC realizes efficient footprint caching with
higher prediction accuracy at a lower hardware cost than
the state-of-the-art footprint caches [9,10]. Our evaluation
with 3D TSV-based in-package DRAM demonstrates that
F-TDC effectively reduces the off-package DRAM band-
width, and thus significantly improves performance and
energy efficiency, while retaining the scalability benefit of
the original TDC.
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