
Empirical Analysis of
Power Management Schemes for Multi-core Smartphones

Sangwook Kim
College of Info. & Comm.
Sungkyunkwan University

Suwon, South Korea
swkim@csl.skku.edu

Hwanju Kim
Dept. of CS

Korea Advanced Institute of
Science and Technology
Daejeon, South Korea

hjukim@calab.kaist.ac.kr

Jongwon Kim
Telecomm. Department

Samsung Electronics Co.
Suwon, South Korea

jz.kim@samsung.com

Joonwon Lee
College of Info. & Comm.
Sungkyunkwan University

Suwon, South Korea
joonwon@skku.edu

Euiseong Seo
College of Info. & Comm.
Sungkyunkwan University

Suwon, South Korea
euiseong@skku.edu

ABSTRACT

Dynamic power management schemes in mobile devices such
as smartphones and tablet PCs enhance battery life at the
cost of prolonged user-perceived response time while the re-
sponse time is a crucial factor for user experience. This
paper presents systematic analysis of existing power man-
agement schemes adopted in recent smartphones in terms of
user-perceived response time and energy consumption. For
this analysis, we developed a latency measurement bench-
mark tool to quantify responsiveness to user inputs and used
it with an externally-connected power meter to concurrently
measure energy consumption and response latency. The
evaluation showed that some existing DVFS schemes can
significantly harm the response time. More seriously, the
analysis revealed that the processor hotplug technique for
multi-core systems may reduce responsiveness even without
any gain in energy savings.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement Techniques

General Terms

Performance

Keywords

power management, multi-core, smartphones, DVFS, mea-
surement, benchmarks

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICUIMC(IMCOM)’13 January 17-19, 2013, Kota Kinabalu, Malaysia.
Copyright 2013 ACM 978-1-4503-1958-4 ...$15.00.

As smartphones and tablet PCs are replacing conventional
PCs, gaming devices and many other consumer electronics,
their applications are requiring increasingly powerful per-
formance. In order to meet such demand, most vendors
continuously enhance their computing components such as
application processors (APs) and graphics processing units
(GPUs). With regard to APs, unlike wimpy microprocessors
in traditional embedded systems, clock frequency and hard-
ware parallelism become comparable to the desktop coun-
terparts. Indeed, quad-core processors are already common
in cutting-edge smartphones and tablets. Furthermore, the
clock frequency of commercial APs recently hit 2.5GHz [1].

High performance computing components in mobile de-
vices, however, brought up an issue on battery life, which
is one of the most crucial concerns mobile users commonly
have. Although multi-core processors are meant to be energy-
efficient units, high clock frequency and increasing number
of cores could drain limited battery more rapidly than low-
power single-core embedded processors. To address this
problem, most off-the-self smartphones and tablets adopt
power management schemes that make use of dynamic volt-

age and frequency scaling (DVFS) [7, 15] and processor hot-

plugging [8]. Considering that energy saving and high perfor-
mance are conflicting goals, many researchers have studied
to optimize power consumption of processors while main-
taining desired performance levels [11, 5, 12].

The existing power management schemes being widely
used in mobile and desktop systems are typically imple-
mented at operating system (OS) layer in order to be de-
ployed without burdening to users or developers. For ex-
ample, Linux provides several kernel-level DVFS policies on
which Android-based mobile devices rely to manage power
consumption. To effectively deal with the trade-off between
power and performance, power management schemes should
estimate the performance demand of an application with
which a user interacts. On the basis of estimated perfor-
mance demands, the OS can adjust clock frequency, or turn
on and off cores on the fly. Most OS-level power manage-
ment schemes regard CPU load as an indicator of perfor-
mance demand, since the workload performance is generally
associated with the CPU load.

However, the existing power management algorithms us-

ing CPU load as their performance decision basis tend to fo-
cus on throughput rather than responsiveness. Such schemes
may hurt responsiveness, since a decision on adjustment of
processor performance is reactively made after CPU load in-
crease is observed. In this regard, agility of power manage-
ment in response to CPU load increase is a major factor to
provide sufficient user responsiveness. Although load-based
power management schemes are widely deployed, there has
been no work on quantitative analysis of various load-based
DVFS and processor hotplug policies from the perspective
of user responsiveness and energy consumption.

This paper presents empirical analysis of various OS-level
power management schemes, DVFS and processor hotplug
policies, which are used by real-world multi-core smartphones.
The analysis is aimed to figure out the extent to which each
power management scheme affects user responsiveness and
how much energy saving is finally achieved by each scheme.
In order to accurately quantify user-perceived latency, we
developed a latency measurement benchmark, named Laten-

cyBench, which measures the time elapsed between a user
input triggered and browser launch completed. For power
measurement, we used a power meter externally connected
to the evaluated device. With this measurement environ-
ment, we examined five Linux DVFS policies, which consist
of two static and three dynamic policies, and a load-based
processor hotplug scheme in an Android-based device.

Our findings obtained from this analysis are summarized
as follows: First, lazy (or conservative) ramping up of clock
frequency in response to CPU load increase leads to degra-
dation of responsiveness that in turn affects user perception
(by hundreds of milliseconds compared to agile ramp-up)
without meaningful gain in energy savings. Second, user re-
sponsiveness under agile ramp-up DVFS policies is close to
the performance achievement at the highest clock frequency.
Third, a load-based processor hotplug policy shows similar
user response time even to the single-core case due to the
high latency of bringing an additional core online after de-
tection of load changes. Through the analysis with various
parameter settings for load monitoring, we found that pro-
cessor hotplug latency itself intrinsically prolongs response
time. Finally, dual-core configuration without hotplugging
contributes both to user responsiveness and energy efficiency
by inducing short active working cycles and long idle period.

The rest of this paper is organized as follows: Section 2
introduces existing power management schemes for smart-
phones, and the analysis environment are presented in Sec-
tion 3. Section 4 evaluates and analyzes the power manage-
ment schemes with the proposed measurement technique,
and Section 5 concludes this research.

2. BACKGROUND
This section covers the details regarding the power man-

agement schemes in smartphones. First, the OS-level pro-
cessor power management policies in the Linux kernel, which
is used as the OS kernel for many existing smartphone OSes,
are introduced. Next, an OS-level multi-core power manage-
ment scheme is explained.

2.1 DVFS Management
Most modern smartphones are equipped with DVFS-enabled

APs. The implementation details such as the maximum and
minimum frequencies vary among different processors. In or-
der to cope with the underlying implementation differences,

Linux abstracts the DVFS control of processors, and then
exposes a simple interface to the upper layer. Using this
interface, a kernel module called governor controls the per-
formance level of processors. Generally, there are two kinds
of governors; the static and dynamic governors.

The static governors simply maintain a predefined perfor-
mance level regardless of the system status. For example,
the performance governor keeps the clock frequency to the
highest supported value, whereas the frequency is statically
set to the lowest one under the powersave governor.

On the other hand, the dynamic governors adjust the pro-
cessor clock speed on-the-fly according to the performance
demand of the system. For instance, the ondemand gover-

nor [9] increases the clock speed to the highest level when
the system load is above the predefined threshold by period-
ically monitoring the system load on the processor. On the
contrary, the ondemand governor decreases the clock speed
when the system load becomes below the predefined thresh-
old. The conservative governor [9] is the modified version of
the ondemand governor, which adjusts the performance level
conservatively. Unlike the ondemand governor, the conser-
vative governor increases the clock frequency gradually when
the system load rises above the predefined threshold, and de-
creases the frequency step by step in response to sufficiently
low system load.

The two dynamic governors mentioned above depend on
periodic monitoring of system load, which could lead to de-
layed response to sporadic user inputs. The interactive gov-

ernor [3], as its name suggests, is designed for interactive
workloads requiring fast reaction. Basically, the interac-
tive governor uses periodic load-based technique similar to
other governors. However, the interactive governor delegates
the procedure for adjusting the clock frequency to a kernel
thread with the highest real-time priority for preventing de-
layed reaction due to scheduling contention with other tasks.
In addition, this governor adjusts the clock frequency when
a processor comes out of idle state. Hence, the interactive
governor can quickly increase the clock frequency in response
to the sporadic user-generated events such as screen touches
or button presses.

Most Linux kernel-based smartphones currently are using
one of the dynamic governors mentioned above or a variant
of them. Especially, the ondemand governor is used as the
default governor by most Linux kernel-based smartphones.
Recently, the interactive governor is adopted as the default
governor for the official Android platform.

2.2 Multi-core Management
Increasing the number of processor cores incurs signifi-

cant power consumption increase. To mitigate this increased
power consumption, processor hotplugging [8] is widely used
for smartphones. By using processor hotplugging, unneces-
sary cores remain in the lowest power state until they be-
come required again. Unnecessary cores can be identified
using the system statistics similar to that of the dynamic
governors.

The representative processor hotplugging algorithm, which
is applied to the commercial dual-core smartphone, is pre-
sented in Figure 1. Suppose that the target processor has
dual cores. This algorithm periodically monitors average
load of on-line cores, and then turns off the second core
(Core-1) if either the average load is less than the low-
threshold value or the processor clock has been adjusted

C < 20

or

F <= 200

Calculate average load

of on-line cores

C > 60

and

F > 200

Sleep for 0.5s

Core-1 off Core-1 on

C < 20

or

F <= 200

Calculate averag

of on-line cor

Core-1 off

C < 20

and

F > 200

Core-1 on

Yes

No No

Yes

C = Average load (%)

F = Current frequency (MHz)

Figure 1: The processor hotplug algorithm in the
commercial dual-core smartphone. (200 Mhz is the
lowest supported clock speed in the target plat-
form.)

to the lowest value by the governor. Conversely, Core-1
is turned on when the average load rises above the high-
threshold value and the governor has adjusted clock fre-
quency to a greater value than the lowest one. Although
the implementation details may differ depending on APs,
the introduced approach is used as the fundamental ppolicy
in the currently available hotplug implementation [2].

Though the processor hotplugging technique can reduce
power consumption, it can also cause delayed response to
user inputs because turning on a core inherently incurs both
hardware and software latency [10]. To quantify the ag-
gregated latency of processor hotplugging in real systems,
the time from initiation of the activation procedure to its
completion was measured on the dual-core embedded board.
(The detailed information about the board is given in Sec-
tion 3.) According to this measurement, the activation pro-
cedure was revealed to take approximately 100 ms to bring
the second core to on-line. The aggregated latency includes
time spent in both OS and hardware layers. Since this la-
tency is not negligible, the parameter values that control the
processor hotplugging algorithm to determine the monitor-
ing period should be carefully selected to minimize unneces-
sary power consumption while fully utilizing the computa-
tion power of a multi-core processor.

3. ANALYSIS METHODOLOGY
This section addresses the design and implementation of

LatencyBench, which measures the response delay of sys-
tems to assess the quality of user experience. In addition,
this introduces both hardware and software configurations
of the experimental system.

3.1 LatencyBench
To assess the power management schemes in terms of user

experience, measurement of response time under each power

Browser Package

LatencyBenchActivity

Start

Count

Stop

BrowserLauncherService

LatencyBench Package

Start service

Get start time

Launch Browser

Delay

ch Br

Activity start

ce

Activity s

onCreate()

onStart()

onResume()

Get end time

Destroy

Creat

Start

Resum

end t

ro

y

DestrDestr

Delay

Figure 2: Execution flow of LatencyBench.

management scheme is quintessential. However, most exist-
ing performance measurement tools or benchmark suites for
smartphones are designed only to measure throughput of the
systems.

In order to fill this gap, we implemented a response de-
lay benchmark tool, LatencyBench. LatencyBench measures
the time interval between invocation of an application by
user inputs and completion of the application launch pro-
cess. LatencyBench does not require any modification of
the existing systems since it is implemented as a user-level
application.

LatencyBench is a user-level application written in Java.
It consists of two packages; the LatencyBench package and
the Browser package as shown in Figure 2. A thread in the
LatencyBench package, which was named LatencyBenchAc-
tivity, obtains both number of evaluation and time delay
between every run from users, and then periodically instanti-
ates the browser launching service according to the given pa-
rameters. The browser launching service, BrowserLaunch-
erService, records the time of every instantiation start and
invokes the web browser through the Browser package. The
Browser package is a modified version of the Android default
web browser. It records a time stamp when it finishes initial-
ization and gets ready to operate. After marking the time
stamp, it destroys itself and the context returns to Browser-
LauncherService. LatencyBench considers the elapsed time
between these two time stamps as response delay of the web
browser launch activities. This evaluation loop is repeatedly
conducted as many times as the given number of iteration.
In order to stabilize clock frequency according to a policy of
the applied governor, LatencyBenchActivity pauses for the
given time delay between every iteration.

3.2 Experimental Hardware
As an evaluation platform, this research employed an em-

bedded board for commercial tablets and smartphones. The
board is equipped with an Exynos 4210, a dual-core AP op-
erating at 1 Ghz, and the main memory size is 1 GB. In
every experiment, the display brightness of the board was
set to 50% of its maximum. As an OS, Android 2.3.4 was
installed on top of the embedded board.

Figure 3: Experimental setup.

The power consumption was measured with a Yokogawa
WT-210, a digital power meter. The power meter is con-
nected to the D/C power input to the embedded board.
The power meter includes a data acquisition unit and the
unit is attached to a PC. The data produced by the power
meter are collected by the PC through the data acquisition
unit. The sample rate of data is 100 ms, and the accuracy
of measurement is over 99.9% according to its specification
sheet. Figure 3 shows the experimental environment.

In order to compare the various power management schemes,
several Linux power management governors were incorpo-
rated into the experimental platform. In addition, to as-
sess the effectiveness of multi-core management schemes, the
experimental system was configured with three multi-core
management policies. The first policy is Dynamic-hotplug.
It is a variant of the processor hotplug approaches, which
were introduced in Section 2. Second, the system was set
to use only one of the two cores. This is dubbed as Single-

core. In the third scheme, Dual-core, both cores are always
actively used.

4. EVALUATION
This section presents the experimental results and analysis

of the DVFS governors. Then, the experiments of Dynamic-
hotplug with various configurable parameters follow to ana-
lyze its effectiveness in detail.

4.1 Experimental Results
To measure the performance in terms of response time,

ten consecutive launches of the Browser are carried out us-
ing LatencyBench, and then the recorded latencies are av-
eraged for comparison. Note that a total execution time of
the benchmark is different depending on the applied power
management schemes. Hence, in the measurements of en-
ergy consumption, energy consumption in idle period with
display-on is padded to energy consumption during execu-
tion of the benchmark on the basis of execution time of
the slowest one, to fairly compare the management schemes.
The results with an assumption of display-off idle period are
omitted because they showed similar trend with the display-
on case.

Figure 4 shows the average response latency of various

 0

 200

 400

 600

 800

 1000

 1200

 1400

Performance Powersave Ondemand Conservative Interactive

A
ve

ra
ge

 la
te

nc
y

(m
s)

Governors

Single-core
Dual-core

Dynamic-hotplug

Figure 4: Average response time of various power
management policies using LatencyBench.

combinations of DVFS and multicore management schemes
using LatencyBench, and Figure 5 shows the energy con-
sumption. As expected, the performance governor achieved
better responsiveness than the powersave governor whereas
the performance governor consumed more energy than the
powersave governor.

The system responded more quickly when using the on-
demand governor than the conservative governor. This re-
sult stems from the difference between the algorithm policies
about the conditions to increase the clock frequency. The
conservative governor increases the clock frequency gradu-
ally in response to high load such as launching a web browser
whereas the ondemand governor promptly increases the clock
speed to the highest value when the system load hits the
ceiling. Note that there was only little difference in energy
consumption though the difference in response time was sig-
nificant.

The interactive governor achieved better responsiveness
than the ondemand governor since the interactive gover-
nor instantly activates its DVFS algorithm and raises the
clock speed when a processor comes out of idle state. This
aggressive adjustment caused more energy consumption in
comparison to ondemand as shown in Figure 5. However,
the difference of energy consumption between the ondemand
and the interactive governor is insignificant compared to the
gain in the reduced response time.

According to these results, there were significant differ-
ences in response time depending on the applied governors.
In terms of energy consumption, however, only little differ-
ences were observed across various governors. This result
can be explained through the fact that the processor used in
the experiments consumes only little portion of the overall
power consumption in comparison to powerful processors be-
ing used in servers or PCs [4, 13]. In addition, the length of
the idle period affects the overall energy consumption. For
example, the ondemand governor completes its execution of
the benchmark earlier than the conservative governor. Thus,
the processor consumes only the idle power for the rest of
the time. This gap in the power consumption during the idle
period actually reduces the overall energy consumption dif-
ference between the ondemand and conservative governors
in spite of the relatively long period of high frequency under

 90

 95

 100

 105

 110

Performance Powersave ndemand Conservative nteractive

En
er

gy
 (J

)

Governors

Single-core
Dual-core

Dynamic-hotplug

Figure 5: Energy consumption of various power
management policies during the execution of Laten-
cyBench. (display is on during idle period.)

Table 1: Average wait time of the Browser process
in the run-queue under different multi-core manage-
ment policies with the performance governor

Management Policy Average Wait Time (us)
Single-core 907
Dual-core 282

Dynamic-hotplug 903

ondemand.
Regarding the core management policies, Dual-core showed

lower latency than Single-core in all combinations with the
DVFS governors. Interestingly, the response time under
Dynamic-hotplug was close to that under Single-core though
both cores are supposed to be in activation state as system
load increases under Dynamic-hotplug. This result implies
that Dynamic-hotplug cannot effectively utilize the com-
putation power of the multi-core processors. In addition,
Dynamic-hotplug consumed more energy than Dual-core in
most cases because it completed the benchmark slower than
the Dual-core cases. Similarly, Single-core consumed more
energy than Dual-core in most cases due to the extended
execution time, and thus the shortened idle time.

In order to further analyze the results on the multi-core
management policies, scheduling delay during the experi-
ments was measured. Table 1 shows the average wait time of
the Browser process in the run-queue when the three man-
agement policies are applied in combination with the per-
formance governor. The average wait time of the Dual-core
case was significantly shorter than that under both Single-
core and Dynamic-hotplug. In addition, the average wait
time of Dynamic-hotplug was very similar to Single-core,
which again means that Dynamic-hotplug could not take
advantage of the second core. These results suggest that
the Dynamic-hotplug algorithm, with its default parame-
ters, fails to rapidly react to instant high load, which is
commonly found in smartphone workloads.

To explore the possible improvement of hotplugging ef-
fectiveness, additional experiments were conducted by vary-
ing values of three configurable parameters of the Dynamic-
hotplug algorithm. The configurable parameters are the

 250

 260

 270

 280

 290

 300

 310

 320

A
ve

ra
ge

 la
te

nc
y

(m
s)

Multi-core management policy

ingle-core

ual-core

efault20,0,0.5s

5,20,0.5s

5,10,0.5s

5,5,0.5s

20,0,0.025s

Figure 6: Average response time under various
multi-core management policies. (x %, y %, z s)
= (low threshold to turn off, high threshold to turn
on, monitoring period.)

high-load threshold to turn on the second core, low-load
threshold to turn off the second core, and monitoring pe-
riod that determines the granularity of the decision cycle.

Figure 6 shows the average response delay according to
various configurations of the Dynamic-hotplug policy. The
average latency of Dynamic-hotplug was reduced compared
to its default configuration when both high-load and low-
load threshold values were lowered, because lowering the
thresholds made the algorithm more sensitive to the system
load. Moreover, the average response time was further re-
duced than the other configurations when the monitoring
period was shortened to 0.025 s with the other parameter
values same as the default setting. This result implies that
the monitoring period is more critical to the user-perceived
response time than the threshold values.

However, Dynamic-hotplug with various parameters could
not perform as fast as Dual-core. This limitation arises
from the inherent delays of processor hotplug. Generally,
Dynamic-hotplug triggers activation of the second core when
it senses that the current load hits the high threshold. How-
ever, the core activation time, which is approximately up to
100 ms as described in Section 2, prohibits scheduling of the
newly created heavy load processes on the second core. This
scheduling delay cannot be eliminated by the customization
of the parameter values.

Figure 7 shows energy consumption under various con-
figurations of the multi-core management policies with the
performance governor. The energy consumption under the
Dual-core setup was lower than that under any other poli-
cies because Dual-core finished the workload in the shortest
time and stayed in the longest idle state. The energy con-
sumption under Dynamic-hotplug was generally reduced as
the parameters were changed to the aggressive values. The
amount of energy consumed under Dynamic-hotplug with
the default parameters is lower than that in the cases where
the two threshold values were adjusted to increase sensitivity
for changing system load. With the default configuration,
Dynamic-hotplug reacted tardily to the load changes, and
in consequence, the second core became online in a few mil-
liseconds after the Browser process began to execute.

 100

 101

 102

 103

 104

 105

 106

 107
En

er
gy

 (J
)

Multi-core management policy

ingle-core

ual-core

efault20,0,0.5s

5,20,0.5s

5,10,0.5s

5,5,0.5s

20,0,0.025s

Figure 7: Energy consumption under various multi-
core management policies. (x %, y %, z s) = (low
threshold to turn off, high threshold to turn on,
monitoring period.)

Note that the differences of energy consumption among
the core management policies are insignificant in comparison
to the differences in average response latency. The maximum
gap of response latency between the best case and the worst
case was 20 % while that of energy consumption was only 6
%.

4.2 Analysis and Implications
According to the results, user-perceived response time is

highly dependent on which power management scheme is
used whereas the effect to the energy efficiency is relatively
insignificant. Conservative DVFS policies remarkably de-
grade user-perceived responsiveness compared to that of ag-
gressive DVFS policies. Though aggressive DVFS policies
typically consume more energy than conservative policies,
the differences in energy consumption among various poli-
cies were negligible.

These results stemmed from the power consumption con-
stitution in modern mobile systems. According to the pre-
vious research, processor power consumption takes little pro-
portion in overall power consumption of a mobile system [13].
Moreover, similar to desktops or servers [14], a processor for
a smartphone is expected to integrate more transistors in a
single core, and both the size of SRAM and the number of
cores per processor also increasing. As a consequence, static
power of a processor is continuously increasing whereas dy-
namic power is decreasing. This trend implies that energy
savings by using the DVFS are expected to be reduced since
DVFS can reduce only dynamic power consumption. Thus,
the margin in power consumption that can be saved by
DVFS management schemes is low in modern APs.

However, the impact of the power management schemes
on user-perceived responsiveness are direct. Considering the
trend on mobile processors and importance of responsive-
ness in smartphones, response time should be given higher
priority than energy consumption when designing processor
power management schemes for smartphones.

In the case of multi-core management schemes, Dynamic-
hotplug showed pathological behaviors during the experi-
ments due to the unacceptable hotplug delay and its inap-

propriate parameter settings. In some cases, dynamic multi-
core management leaded to even more energy consumption
than the case that the dynamic management policy was not
applied (i.e., Dual-core). Though the system’s responsive-
ness is sacrificed for possible energy savings, the carelessly
designed algorithm did not work successfully. This is contra-
dictory to the purpose of dynamic core state management.

Therefore, dynamic multi-core management policy should
carefully decide when to activate or deactivate reflecting the
inevitably incurred hotplug delay. In addition, considering
processor improvement on energy-efficient idle states, it is
highly encouraged to use advanced idling states whenever
possible as an alternative to dynamic hotplug techniques.

The ideal goal of a power management scheme is to use
high clock frequency only in performance-critical interval.
To accomplish this goal, the existing power management
schemes typically compare the current system load to prede-
fined threshold values to determine the performance-critical
time interval. However, system load was identifed not to be
an effective marker for performance demand because there
are CPU-intensive background tasks which have little im-
pact on responsiveness for a smartphone user.

In order to deal with the inherent limitation of OS-level
approach, some researchers have investigated possibilities
of user-driven processor power management schemes. The
principle of user-driven techniques is to exploit user-perceived
latency as a metric for dealing with the performance-energy
trade-off. For example, Zhong et al. [16] used prediction
mechanism based on human-computer interaction history
and theories from the filed of psychology in order to de-
cide adequate performance level of a processor. On the other
hand, Mallik et al. [6] proposed a user-driven frequency scal-
ing scheme (UDFS) which dynamically changes clock fre-
quency through a direct user feedback mechanism.

However, none of the proposed techniques are designed
for multi-core smartphones, which have different character-
istics from laptops or cellphones. Generally, there is only one
foreground task, which interacts directly with a user, at a
time with some background tasks in a smartphone. Hence, it
would be better to exploit application or framework-level in-
formation such as application launches or screen touches be-
cause they can directly recognize the start and end points of
user interaction without requiring complex prediction mech-
anisms or unnecessary user involvements.

5. CONCLUSION
This paper analyzed the effectiveness of various power

management schemes for multi-core smartphone systems in
terms of energy efficiency and user-perceived response la-
tency. To achieve this goal, this paper presents Latency-
Bench, which is a simple benchmark tool that measures the
response delay of smartphone systems.

The evaluation showed that the existing power manage-
ment schemes have different characteristics in aspects of en-
ergy efficiency and user-perceived responsiveness. Specifi-
cally, the experimental results showed that the use of a sim-
ple processor hotplug algorithm may harm the responsive-
ness of systems because it does not timely react to sponta-
neous user inputs and, in turn, cannot fully utilize all cores.

An OS-level power management has inherent limitation
for identifying performance-critical interval because of insuf-
ficient information. In order to deal with this limitation, we
are working on a user-driven processor power management

scheme for multi-core smartphones as our future work.
In addition, asymmetric multi-core processors are expected

to be widely used in smartphones and other consumer elec-
tronics in the near future. Since they have totally different
performance and power characteristics in comparison to the
conventional symmetric multi-core processors, we are also
planning to investigate the issues around power manage-
ment schemes for asymmetric multi-core processors in the
follow-up research.

6. ACKNOWLEDGEMENTS
This research was supported by Basic Science Research

Program (2010-0003453) and Next-Generation Information
Computing Development Program (2012-0006423) through
the National Research Foundation of Korea(NRF) funded
by the Ministry of Education, Science and Technology.

7. REFERENCES
[1] ARM A15 MPCore. http://www.arm.com/products/

processors/cortex-a/cortex-a15.php.

[2] Hotplug governor. https://wiki.linaro.org/
WorkingGroups/PowerManagement/Doc/Hotplug.

[3] Interactive governor.
https://lkml.org/lkml/2012/2/7/483.

[4] A. Carroll and G. Heiser. An analysis of power
consumption in a smartphone. In In Proceedings of the

2010 USENIX Annual Technical Conference, 2010.

[5] J. R. Lorch and A. J. Smith. Operating system
modifications for task-based speed and voltage
scheduling. In In Proceedings of the 1st International

Conference on Mobile Systems, Applications and

Services, 2003.

[6] A. Mallik, B. Lin, G. Memik, P. Dinda, and R. P.
Dick. User-driven frequency scaling. Computer

Architecture Letters, 5(2):1–4, Dec. 2006.

[7] T. Mudge. Power: A first class architectural design
constraint. IEEE Computers, 34(4):52–58, Apr. 2001.

[8] Z. Mwaikambo, A. Raj, R. Russel, and J. Schopp.
Linux kernel hotplug CPU support. In In Proceedings

of the Ottawa Linux Symposium, 2004.

[9] V. Pallipadi and A. Starikovskiy. The ondemand
governor. In In Proceedings of the Ottawa Linux

Symposium, 2006.

[10] S. Panneerselvam and M. M. Swift. Chameleon:
Operating system support for dynamic processors. In
In Proceedings of the 17th International Conference on

Architectural Support for Programming Languages and

Operating Systems, 2012.

[11] P. Pillai and K. G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In
In Proceedings of the 18th ACM Symposium on

Operating Systems Principles, 2001.

[12] E. Seo, S. Park, J. Kim, and J. Lee. TSB: A DVS
algorithm with quick response for general purpose
operating systems. Journal of Systems Architecture,
54(1–2):1–14, Jan. 2008.

[13] Y. Seo, J. Kim, and E. Seo. Effectiveness analysis of
DVFS and DPM in mobile devices. Journal of
Computer Science and Technology, 27(4):781–790,
July 2012.

[14] E. L. Sueur and G. Heiser. Dynamic voltage and
frequency scaling: The laws of diminishing returns. In
In Proceedings of the 2010 Workshop on Power Aware

Computing and Systems, 2010.

[15] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In In Proceedings

of the 1st USENIX Conference on Operating Systems

Design and Implementation, 1994.

[16] L. Zhong and N. K. Jha. Dynamic power optimization
targeting user delays in interactive systems. IEEE
Transactions on Mobile Computing, 5(11):1473–1488,
Nov. 2006.

