
Problem Solving Using C:
Orientation & Lecture 1

Introduction

 Instructor: Joonwon Lee

 031-299-4592

 joonwon@skku.edu

 Semiconductor Hall 400626 (6th floor)

 Homepage: http://csl.skku.edu/SSE2025/Overview

mailto:joonwon@skku.edu
http://csl.skku.edu/SSE2025/Overview

Course Objectives

 Introduce various subjects in computer
science through puzzles and problems

 Most problems came from ICPC

Course Elements

 14 Lectures (once every week)

 10 Programming Labs

 3 Individual Programming Homework
Assignments

 1 Team Programming Homework Assignment

 Mid-Term & Final Exams

 Most questions will be based on labs and
assignments

Textbook

 Programming Challenges by Steven S. Skiena
and Miguel A. Revilla – Springer

 can be download from the SKKU library

Course Rules (1/2)

 cheating in exams

 machine check

 will receive an “F” for the course

 late homework

 10% penalty per day

 cheating on homework

 will receive a “0” point

 1% penalty for missing a lecture class

 2% penalty for missing a Lab.

Course Rules (2/2)

 “not attending” a class includes
 not attending a class

 being late to a class

 leaving a class in the middle

 chatting in class

 having the mobile phone on in class

 if you sleep, you die!!

Course Grading Policy

 Programming Homework: Individual 20

 Programming Homework: Team 20

 Programming Exercises (실습): 20

 Mid-Term Exam: 20

 Final Exam 20

 Total 100

Merit Awards

 Best Homework (For Each Individual
Programming Assignment)

 Extra 5% of the total point as bonus points

 Best Team (for team assignment)

 Extra 5% for all the members

 Top 5 Students

 A dinner at the end of the semester

Course Outline

Problem Solving

 Using C

 Basic Software Engineering

 Programming Patterns

 Problem Solving Techniques

 Practice

What You Need
to Solve a Problem by Programming

 Programming Language Skills

 Correct rules

 Identifying rule violations

 Programming Skills

 Training on programming patterns

 Training on software engineering methods

 Problem Solving Skills

 Logical thinking

Programming

 Programming Is To Use the “Dumb” Computer
To Solve a Problem That A Human Cannot
Solve Fast Enough.

 The Computer Needs “Very Very Very” Precise
and Detailed Instructions.

 The Instructions Must Be in a Programming
Language, Not a Natural Language.

Natural Language

What is 27.2 times 13.8 ?

Programming Languages

 Machine Languages

 Assembly Languages

 High-Level Languages

Machine Language

000000 00001 00010 00110 00000 100000
Add the registers 1 and 2 and place the result in register 6

100011 00011 01000 00000 00001 000100
Load a value into register 8, taken from the memory cell 68
after the location listed in register 3:

000010 00000 00000 00000 00100 000000
Jump to the memory address 1024:

Assembly Language

MOV r0, #0C
load base address of string into r0

LOAD: MOV r1,(r0)
load contents into r1

CALL PRINT
call a print routine to print the character in r1

INC r0
point to the next character

JMP LOAD
load next character

High-Level Language

float length, width, area;

length = 27.2;
width = 13.8;
area = length * width;

High-Level Programming Languages

 Over 500 Languages
(http://en.wikipedia.org/wiki/List_of_programming_langua
ges_by_category)

 Basic, FORTRAN, COBOL, RPG

 (Algol, Pascal, PL/1), C

 C++, C#, Java (ADA, Smalltalk, Eiffel)

 Perl, TCL, Java Script, PHP, Python, Ruby

 SNOBOL, LISP, (Scheme)

 MATLAB, (APL)

 Shell, Awk, REXX

 SQL, (Prolog), XML, Xquery, XSLT, Postscript, OWL

 4GL

 UML

 Verilog, VHDL

http://en.wikipedia.org/wiki/List_of_programming_languages_by_category
http://en.wikipedia.org/wiki/List_of_programming_languages_by_category

Executing Programs

 Compile

 Converting programs written in a high-level
language into an assembly language or a pseudo
code

 Assemble

 Converting programs written in an assembly
language into a machine language

 Interpret

 Running programs written in a high-level language
without compiling (one instruction at a time)

Programming Languages

 “You Can Solve Any Problem Using Any
Programming Language.”

 But Different Languages Are Designed To Serve
Different Purposes Better.

 FORTRAN for scientific computations

 COBOL for business data processing

 LISP for list processing

 VisualBasic for user-interface programming

 SQL, PHP for database applications

 C++, Java for object-oriented software development

 C for most modern enterprise/scientific applications

Problem Solving by Programming

 Programming Is
 Translating very very precise instructions in some

natural language (e.g., Korean, English,…) into some
programming language (e.g., C, Java,…) to solve a
problem that a human cannot solve easily.

 So, Before You Program, You Need Very Very
Precise Instructions on “How To” Solve the
Problem.
 You need a “design”.

 Before You Know “How To” Solve the Problem,
You Need To Know Precisely What The Problem
Is (“What To Do”).
 You need to understand the requirements.

Problem Solving by Programming: Steps

(1) Understand In Precise Detail “What the Problem Is”.

Requirements Analysis (Document)
(2) Understand Precisely “How To Solve the Problem”.

Basic Design (Document)
(3) For Each Way, Write Down Very Precise and Detailed Instructions

(in Korean or English, and Using Diagrams) On “How To Solve the
Problem”.

Detailed Design (Document)
(4) Choose the “Best” Way.

(5) Translate the Instructions Into a C Program.

Coding (Programming, Implementation) (Document)
(6) Test (Validate, Verify) the C Program

Test Cases (Document)

