
Graph

Graph Usage

 I want to visit all the known famous places
starting from Seoul ending in Seoul

 Knowledge: distances, costs

 Find the optimal(distance or cost) path

Graph Theory

 Many problems are mapped to graphs

 traffic

 VLSI circuits

 social network

 communication networks

 web pages relationship

 Problems

 how can a problem be represented as a graph?

 how to solve a graph problem?

Graph Notations

 A graph G = (V, E)

 V is a set of vertices(nodes)

 E is a set of edges
 E = (x, y) where x, y  V

 ordered or unordered pairs of vertices from V

 Examples
 map

 landmarks or cities are vertices

 roads are edges

 program analysis
 a line of program statement is a vertice

 the next line to be executed is connected thru edge

Graphs

 A graph G = (V, E)

 is undirected if edge (x, y)  E implies that (y, x) 
E, too.

 is directed if not

 Most graph problems are undirected

w x

zy

w x

zy

Graphs

 weighted or unweighted

w x

zy

5

3

1

7

w x

zy

1

1

1

1

Graphs

 acyclic – a graph without any cycle

 undirected (free tree)

 directed (DAG) – the most important one

Graph Representation

 G = (V, E), |V|=n and |E|=m

 adjacency-matrix

 n x n matrix M
M[i, j] = 1, if (i, j)  E

0, if (i, j)  E

 good
 easy to check if an edge (i, j) is in E

 easy to add/remove edges

 bad
 space overhead if n >> m

Examples

 the City (Manhattan) – not so big area
 15 avenues and 200 streets

 3000 vertices and 6000 edges

 3000 X 3000 = 9,000,000 cells

 VLSI chip with 15 million transistors

1 2

5 4

3

0 1 0 0 1

1 0 1 1 1

0 1 0 1 0

0 1 1 0 1

1 1 0 1 0

1

2

3

4

5

1 2 3 4 5

1 2

5 4

3

0 1 0 0 1

0 0 0 0 1

0 0 1 1 0

0 0 0 0 0

0 0 0 1 0

1

2

3

4

5

1 2 3 4 5

Graph Representation 2

 space efficient for sparse graphs

 problems?

1 2

5 4

3

1 2

5 4

3

2 5 /1

1 4 /2 5 3

2 4 /3

2 3 /4 5

4 2 /5 1

2 5 /1

5 /2

3 4 /3

4 /5

Graph Representation 3

 mixed version

 use array instead of linked lists

 looks good? alternatives?

1 2

5 4
3

1 2 5
1 2

2 1 5
1 2

4 3
3 4

3 2 4
1 2

4 2 5
1 2

3
3

5 1 2
1 2

4
3

1 2

5 4
3

1 2 5
1 2

2 5
1

3 3 4
1 2

5 4
1

Terminologies - adjacency

 clear for undirected grapg

 for directed graph
 2 is adjacent to 1

 1 is NOT adjacent to 2

 make a formal definition

 if y is adjacent to x, we write x  y
 1  2

1 2

4 5

3

6

Terminologies 2 - incident

 directed
 an edge (x, y) is incident from (or leaves) vertex x

 and is incident to (or enters) vertex y.

 undirected
 an edge (x, y) is incident on vertices x and y

 ex.

 the edges incident on vertex 2: (1, 2), (2, 5)

Terminologies 3

 Degree of a vertex
 undirected

 the number of edges incident on it.
ex. vertex 2 in the graph has degree 2.

 A vertex whose degree is 0,
i.e., vertex 4 in the graph, is isolated.

 directed

 out-degree of a vertex : the number of edges leaving it

 in-degree of a vertex : the number of edges entering it

 degree of a vertex : its in-degree + out-degree

 ex. – vertex 2 in the right graph

 in-degree = 2

 out-degree = 3

 degree = 2+3 = 5

1 2

4 5

3

6

1 2

4 5

3

6

Adjacency matrix structure

 only if you know MAXDEGREE

 otherwise, MAXV X MAXV

 symmetric for undirected graph
 waste of space

adding an edge - insert_edge(g, 1, 2, false)

1 2 … 50

1

2

…

100

edges[101][51]

0

0

…

0

1

2

…

50

degree[51]

1

2 3

Graph Traversal

 visit vertices and edges

 all of them for completeness

 exactly once for efficiency

 Breadth First Search (BFS)

 Depth First Search (DFS)

BFS

s

2

5

4

7

8

3 6 9

s

2

5

4

7

8

3 6 9

0

Undiscovered

Discovered

Finished

Queue: s

Top of queue

2
1

Shortest path

from s

2

s

2

5

4

7

8

3 6 9

0

Queue: s 2

3

1

1

Undiscovered

Discovered

Finished

Top of queue

3

s

2

5

4

7

8

3 6 9

0

Queue: s 2 3

5

1

1

1

Undiscovered

Discovered

Finished

Top of queue

5

s

2

5

4

7

8

3 6 9

0

Queue: 2 3 5

4
1

1

1

2

Undiscovered

Discovered

Finished

Top of queue

4

s

2

5

4

7

8

3 6 9

0

Queue: 2 3 5 4

1

1

1

2

5 already discovered:

don't enqueue

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 2 3 5 4

1

1

1

2

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 3 5 4

1

1

1

2

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 3 5 4

1

1

1

2

6

2

Undiscovered

Discovered

Finished

Top of queue

6

s

2

5

4

7

8

3 6 9

0

Queue: 5 4 6

1

1

1

2

2

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 4 6

1

1

1

2

2

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 4 6

1

1

1

2

2

8
3

Undiscovered

Discovered

Finished

Top of queue

8

s

2

5

4

7

8

3 6 9

0

Queue: 6 8

1

1

1

2

2

3

7

3

Undiscovered

Discovered

Finished

Top of queue

7

s

2

5

4

7

8

3 6 9

0

Queue: 6 8 7

1

1

1

2

2

3

9

3

3

Undiscovered

Discovered

Finished

Top of queue

9

s

2

5

4

7

8

3 6 9

0

Queue: 8 7 9

1

1

1

2

2

3

9

3

3

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 7 9

1

1

1

2

2

3

3

3

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 7 9

1

1

1

2

2

3

3

3

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 7 9

1

1

1

2

2

3

3

3

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 9

1

1

1

2

2

3

3

3

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue: 9

1

1

1

2

2

3

3

3

Undiscovered

Discovered

Finished

Top of queue

s

2

5

4

7

8

3 6 9

0

Queue:

1

1

1

2

2

3

3

3

Undiscovered

Discovered

Finished

Top of queue  Since Queue is empty, STOP!

BFS Algorithm

BFS(G, s)

for each vertex u  V – {s}

do color[u]  GRAY

d[u] 

[u]  NIL

color[s]  BLUE

d[s]  0

[s]  NIL

ENQUEUE(Q, s)

while (Q  )

do u  DEQUEUE(Q)

for each v  Adj[u]

do if color[v]  GRAY

then color[v]  BLUE

d[v]  d[v] + 1

[v]  u

ENQUEUE(Q, v)

color[u]  GREEN

Initialization

DFS

 similar to Backtracking
 go as deep as you can
 next one is your siblings

 stack is an ideal candidate

DFS(G, v)

for all edges e incident on v

do if edge e is unexplored then

w  opposite(v, e) // return the end point of e
distant to v

if vertex w is unexplored then

mark e as a discovered edge

recursively call DFS(G, w)

else

mark e as a back edge

Adjacency Lists

A: F G

B: A I

C: A D

D: C F

E: C D G

F: E:

G: :

H: B:

I: H:
F

A

B C G

D

E

H

I

F

A

B C G

D

E

H

I

Function call stack:

assume “left child first”

Topological Sort

 Definition

 A topological sort of a DAG G is a linear ordering of
all its vertices such that if G contains a link (u,v),
then node u appears before node v in the ordering

b

c a

d

b

c a

d

1

2 3

4

Algorithm Example

 find source nodes (indegree = 0)

 if there is no such node, the graph is NOT DAG

c

a

b

e

d

f

in_deg=1

in_deg=0

in_deg=2

in_deg=1

in_deg=3

in_deg=1 Queue

Sorted: -

c

 span c; decrement in_deg of a, b, e

 store a in Queue since in_deg becomes 0

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=1

in_deg=1

in_deg=2

in_deg=1 Queue

Sorted: c

c

a

 span a; decrement in_deg of b, f

 store b, f in Queue since ...

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=2

in_deg=1 Queue

Sorted: c a

a

b

f

 span b; store d in Queue

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=2

in_deg=0 Queue

Sorted: c a b

b

f

d

 span f; decrement in_deg of e
 no node with in_deg = 0 is found

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=1

in_deg=0 Queue

Sorted: c a b f

f

d

 span d; store e in Queue.

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0 Queue

Sorted: c a b f d

d

e

 span e; Queue is empty

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0 Queue

Sorted: c a b f d e

e

Example Algorithm Summary

 Based on indegree of each vertex
 if it is 0, this node is the first one in the sorted list

 span this node
 move this node from Queue to the sorted list

 find nodes edged from this node

 decrement indegrees of them

 It is so similar to BFS
 can you do it like DFS?

입력차수 ‘0’인 노드에서 시작!

노드 y와 연결된 노드의 입력차수를 하나씩 감소!

입력차수가 ‘0’인 노드가 생성되면 큐에 저장!

큐가 비워질 때 까지 루프내의 동작을 수행!

Problems 1

 Is a given undirected graph bicolorable?

Problem 2

 input: 4 digits number; S1 S2 S3 S4

 each digit can increment/decrement by one

 find minimal number of dec/inc operations to reach a target four
digits number

 there are n forbidden digits where you should not reach at during
operations

