Graph

Graph Usage

= | want to visit all the known famous places
starting from Seoul ending in Seoul

= Knowledge: distances, costs
= Find the optimal(distance or cost) path

Famous places of Sot
- Press Start -

East Sea

Yellow Sea

Graph Theory

= Many problems are mapped to graphs
= traffic
= VLSI circuits
= social network
= communication networks
= web pages relationship

= Problems

= how can a problem be represented as a graph?
= how to solve a graph problem?

Graph Notations

= A graph G = (V, E)
=« V is a set of vertices(nodes)

« E is a set of edges
« E=(x,y) wherex,y ¢ V
= ordered or unordered pairs of vertices from V

= Examples

= map
= landmarks or cities are vertices
= roads are edges
= program analysis
= a line of program statement is a vertice
= the next line to be executed is connected thru edge

Graphs

= A graph G = (V, E)

= is undirected if edge (x, y) € E implies that (y, x) <
E, too.

= is directed if not
= Most graph problems are undirected

Graphs

= weighted or unweighted

Graphs

= acyclic — a graph without any cycle
= undirected (free tree)

= directed (DAG) — the most important one

Graph Representation

= G=(V, E), IVi=n and |Ei=m

= adjacency-matrix

= N X n matrix M
M, j1=1,if G, j) € E
0,if (i, j) ¢ E
= good
= easy to check if an edge (i, j) is in E
= easy to add/remove edges
= bad
= space overhead if n >> m

Examples

1 2\ 1 —>(2 N
‘/‘ 3 \L/ 3
5 D 5 >
1 2 3 4 5 1 2 3 4 5
1fo 1 o o0 1 1fo 1 o o 1
2(1 0 1 1 1 2(0 0 0 0 1
350 1 0 1 o0 3o 0o 1 1 o0
alo 1 1 0 1 alo 0 0o o0 o
s{1 1 0 1 0 5{0 0 0 1 o0

= the City (Manhattan) — not so big area
= 15 avenues and 200 streets
= 3000 vertices and 6000 edges
= 3000 X 3000 = 9,000,000 cells

= VLSI chip with 15 million transistors

Graph Representation 2

o

] m> ws/
: Bl
: - I
s -2

= space efficient for sparse graphs
= problems?

Graph Representation 3

= Mmixed version
= uUse array instead of linked lists
= looks good? alternatives?

Terminologies - adjacency

=« clear for undirected grapg

= for directed graph
« 2 is adjacent to 1
= 1is NOT adjacent to 2
= make a formal definition

« if y is adjacent to x, we write x > vy
1 o2

N

Terminologies 2 - incident

« directed
= an edge (x, y) is incident from (or leaves) vertex x
= and is incident to (or enters) vertex y.

= undirected
= an edge (x, y) is incident on vertices x and y
= ex.
the edges incident on vertex 2: (1, 2), (2, 5)

Terminologies 3

= Degree of a vertex
= undirected 1—— 2

= the number of edges incident on it. \ ‘
ex. vertex 2 in the graph has degree 2.

= A vertex whose degree is 0,
i.e., vertex 4 in the graph, is /so/ated.

= directed

= out-degree of a vertex : the number of edges leaving it
= in-degree of a vertex : the number of edges entering it
=« degree of a vertex : its in-degree + out-degree
= ex. — vertex 2 in the right graph

in-degree = 2

out-degree = 3

degree = 2+3 = 5

l

U1‘_N

4

h—b-ﬂ

Adjacency matrix structure

#define MAXV 100
#define MAXDEGREE 50

typedef struct {
int edges [MAXV+1] [MAXDEGREE] ;
int degree [MAXV+1];
int nvertices;
int nedges;

} graph;

/ *
[*

maximum number of vertices */
maximum vertex outdegree */

adjacency
outdegree
number of
number of

info */

of each vertex */
vertices in graph */
edges in graph */

= only if you know MAXDEGREE

= otherwise, MAXV X MAXV

= symmetric for undirected graph

= waste of space

adding an edge - insert_edge(g, 1, 2, false)

insert_edge(graph *g, int x, int y, bool directed)

{
if (g->degree[x] > MAXDEGREE)

printf ("Warning: insertion(yd,%d) exceeds max degree\n",x,y);

g->edges[x] [g->degree[x]] = y;
g->degree [x] ++;

if (directed == FALSE)
insert_edge(g,v,x,TRUE) ;

else
g->nedges ++;
1 2 50
1 1
2 2
100 50 0

edges[101][51] degree[51]

Graph Traversal

= visit vertices and edges
= all of them for completeness
= exactly once for efficiency

= Breadth First Search (BFS)
= Depth First Search (DFS)

BFS

Discovered

Top of queue
Finished

Queue: s 2

Discovered

Top of queue
Finished

Queue: s2 3

Discovered

Top of queue
Finished

Queue: 8235

Discovered

Top of queue
Finished

Queue: 2354

5 already discovered:
don't enqueue

Discovered Queue: 2354

Top of queue
Finished

Discovered

Top of queue
Finished

Queue: 2354

Discovered

Top of queue
Finished

Queue: 354

Discovered

Top of queue
Finished

Queue: 3546

Discovered

Top of queue
Finished

Queue: 546

Discovered

Top of queue
Finished

Queue: 46

iscovered

Top of queue
Finished

Queue: 46 8

iscovered

Top of queue
Finished

Queue: 68 7

Discovered

Top of queue
Finished

Queue: 6879

iscovered

Top of queue
Finished

Queue: 879

.
.
.
.
.
-
.
*, *
e *
.
.
°, *
he *
e *
* *
X .
R
.
* .
RN YN
o *.
04 ‘e
. .
¢ .
.
o .
o ‘Y
‘e

Discovered

Top of queue
Finished

Queue: 79

iscovered

Top of queue
Finished

Queue: 79

iscovered

Top of queue
Finished

Queue: 79

iscovered

Top of queue
Finished

Queue: 9

iscovered

Top of queue
Finished

Queue: 9

BTN

iscovered Queue:

Top of queue = Since Queue is empty, STOP!
Finished

BFS Algorithm

BFS(G, s)
for each vertex u € V — {s}
do color[u] < GRAY
d[u] <«
n[u] < NIL
color[s] < BLUE
d[s]«< 0
n[s] < NIL
ENQUEUE(Q, s)
while (Q = ¢)
do u «— DEQUEUE(Q)
for each v € Adj[u]
do if color[v] «— GRAY
then color[v] <~ BLUE
dlv] <« d[v] +1
n[v] < u
ENQUEUE(Q, v)
color[u] « GREEN

> Initialization

DFS

= similar to Backtracking
= go as deep as you can
= next one is your siblings

s stack is an ideal candidate

DFS(G, v)
for all edges e incident on v
do if edge e is unexplored then

w <— opposite(v, e) // return the end point of e
distant to v

if vertex w is unexplored then
mark e as a discovered edge
recursively call DFS(G, w)
else

mark e as a back edge

)
OHAMKA
B O O0OM m =

4

Adjacency Lists

AMOAMBOTH

assume “left child first”

Function call stack:

Topological Sort

= Definition

=« A topological sort of a DAG G is a linear ordering of
all its vertices such that if G contains a link (u,v),
then node u appears before node v in the ordering

/N /N
wi A e

Algorithm Example

= find source nodes (indegree = 0)
= if there is no such node, the graph is NOT DAG

in_deg=1

in_deg=1

in_deg=0 in_deg

in_deg=2

Sorted: -

in_deg=1

Queue

span c; decrement in_deg of a, b, e
= store a in Queue since in_deg becomes 0

in_deg=0 in_deg=1

in_deg=0 in_deg

in_deg=1 in_deg=1

Sorted: ¢

span a; decrement in_deg of b, f
= store b, f in Queue since ...

in_deg=0

in_deg=0 in_deg

in_deg=0

in_deg=0

Sorted: ¢ a

in_deg=1

span b; store d in Queue

in_deg=0

in_deg=0 in_deg

in_deg=0

in_deg=0

Sorted: ¢c a b

in_deg=0

span f; decrement in_deg of e
= no node with in_deg = 0 is found

in_deg=0

in_deg=0

in_deg=0

Sorted: c a bt

span d; store e in Queue.

in_deg=0 in_deg=0

in_deg=0 in_deg=0

Sorted: c abtfd

span e; Queue is empty

in_deg=0 in_deg=0

in_deg=0 in_deg=0 Queue

Sorted: c abfde

Example Algorithm Summary

= Based on indegree of each vertex
= if it is 0, this node is the first one in the sorted list

= Span this node
= move this node from Queue to the sorted list
« find nodes edged from this node
= decrement indegrees of them

= It is so similar to BFS
= can you do it like DFS?

Ec—psart (graph *g, int sorted[]) compute_indegrees(graph *g, int in[])
{

int indegree [MAXV]; int i,j; /* counters */

queue zeroin;

; {=1: ic=g—>) . iad) inlil = 0
int x, v; ‘ for (i=1; i<=g->nvertices; i++) in[i] 0;

int 1, j; for (i=1; i<=g->nvertices; i++)
for (j=0; j<g->degreel[il; j++) :

compute_indegrees (g, indegree) ; in[g->edges[i][j] 1 ++;
init_queue(&zeroin); }
for (i=1; i<=g->nvertices; i++)

if (indegree[i] == 0) enqueue(&zeroin,i); 0
j=0;
while (empty(&zeroin) == FALSE) { !

J = 3+

x = dequeue(&zeroin);

sorted[j] = x;

for (i=0; i<g->degree[x]; i++) {
y = g—>edges [x] [i];

indegree[y] --; y
if (indegreely] == 0) enqueue(&zeroin,y);
}
]) '
} 0 !
if (j '= g->nvertices)

printf("Not a DAG -- only %d vertices found\n",j);

Problems 1

= Is a given undirected graph bicolorable?

Problem 2

= input: 4 digits number; S, S, S; S,
= each digit can increment/decrement by one

= find minimal number of dec/inc operations to reach a target four
digits number

= there are n forbidden digits where you should not reach at during
operations

0000 8056
5317 & 508
8 5
0001 8057
00009 8047
0010 5 508
0090 7T508
0100 6 408
0900

1000

S 000

