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Graph Usage

 I want to visit all the known famous places 
starting from Seoul ending in Seoul

 Knowledge: distances, costs

 Find the optimal(distance or cost) path



Graph Theory

 Many problems are mapped to graphs

 traffic 

 VLSI circuits

 social network

 communication networks

 web pages relationship

 Problems

 how can a problem be represented as a graph?

 how to solve a graph problem?



Graph Notations

 A graph G = (V, E)

 V is a set of vertices(nodes)

 E is a set of edges
 E = (x, y) where x, y  V

 ordered or unordered pairs of vertices from V

 Examples
 map

 landmarks or cities are vertices

 roads are edges

 program analysis
 a line of program statement is a vertice

 the next line to be executed is connected thru edge



Graphs

 A graph G = (V, E) 

 is undirected if edge (x, y)  E implies that (y, x) 
E, too.

 is directed if not

 Most graph problems are undirected
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Graphs

 weighted or unweighted
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Graphs

 acyclic – a graph without any cycle

 undirected (free tree)

 directed (DAG) – the most important one



Graph Representation

 G = (V, E), |V|=n and |E|=m

 adjacency-matrix

 n x n matrix M
M[i, j] = 1, if (i, j)  E

0, if (i, j)  E

 good
 easy to check if an edge (i, j) is in E

 easy to add/remove edges

 bad
 space overhead if n >> m 



Examples

 the City (Manhattan) – not so big area
 15 avenues and 200 streets

 3000 vertices and 6000 edges

 3000 X 3000 = 9,000,000 cells

 VLSI chip with 15 million transistors
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Graph Representation 2

 space efficient for sparse graphs

 problems?
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Graph Representation 3

 mixed version

 use array instead of linked lists

 looks good? alternatives?
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Terminologies - adjacency

 clear for undirected grapg

 for directed graph
 2 is adjacent to 1

 1 is NOT adjacent to 2

 make a formal definition

 if y is adjacent to x, we write x  y
 1  2
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Terminologies 2 - incident

 directed
 an edge (x, y) is incident from (or leaves) vertex x

 and is incident to (or enters) vertex y.

 undirected
 an edge (x, y) is incident on vertices x and y

 ex.

 the edges incident on vertex 2: (1, 2), (2, 5)



Terminologies 3

 Degree of a vertex
 undirected

 the number of edges incident on it.
ex. vertex 2 in the graph has degree 2.

 A vertex whose degree is 0, 
i.e., vertex 4 in the graph, is isolated.

 directed

 out-degree of a vertex : the number of edges leaving it

 in-degree of a vertex : the number of edges entering it

 degree of a vertex : its in-degree + out-degree

 ex. – vertex 2 in the right graph

 in-degree = 2

 out-degree = 3

 degree = 2+3 = 5
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Adjacency matrix structure

 only if you know MAXDEGREE

 otherwise, MAXV X MAXV

 symmetric for undirected graph
 waste of space



adding an edge - insert_edge(g, 1, 2, false)
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Graph Traversal

 visit vertices and edges

 all of them for completeness

 exactly once for efficiency

 Breadth First Search (BFS)

 Depth First Search (DFS)



BFS
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BFS Algorithm

BFS(G, s)

for each vertex u  V – {s}

do color[u]  GRAY

d[u] 

[u]  NIL

color[s]  BLUE

d[s]  0

[s]  NIL

ENQUEUE(Q, s)

while (Q  )

do u  DEQUEUE(Q)

for each v  Adj[u]

do if color[v]  GRAY 

then color[v]  BLUE

d[v]  d[v] + 1

[v]  u

ENQUEUE(Q, v)

color[u]  GREEN

Initialization



DFS

 similar to Backtracking
 go as deep as you can
 next one is your siblings

 stack is an ideal candidate

DFS(G, v)

for all edges e incident on v

do if edge e is unexplored then

w  opposite(v, e) // return the end point of e 
distant to v

if vertex w is unexplored then

mark e as a discovered edge

recursively call DFS(G, w)

else

mark e as a back edge



Adjacency Lists

A:  F G

B:  A I

C:  A D

D:  C F

E:  C D G

F:  E:

G:  :

H:  B:

I:  H:
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Function call stack:

assume “left child first”



Topological Sort

 Definition

 A topological sort of a DAG G is a linear ordering of 
all its vertices such that if G contains a link (u,v), 
then node u appears before node v in the ordering 
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Algorithm Example

 find source nodes (indegree = 0)

 if there is no such node, the graph is NOT DAG
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 span c; decrement in_deg of a, b, e

 store a in Queue since in_deg becomes 0
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 span a; decrement in_deg of b, f

 store b, f in Queue since ...
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 span b; store d in Queue
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 span f; decrement in_deg of e
 no node with in_deg = 0 is found
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 span d; store e in Queue.
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 span e; Queue is empty
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Example Algorithm Summary

 Based on indegree of each vertex
 if it is 0, this node is the first one in the sorted list

 span this node
 move this node from Queue to the sorted list

 find nodes edged from this node

 decrement indegrees of them

 It is so similar to BFS
 can you do it like DFS?



입력차수 ‘0’인 노드에서 시작!

노드 y와 연결된 노드의 입력차수를 하나씩 감소!

입력차수가 ‘0’인 노드가 생성되면 큐에 저장!

큐가 비워질 때 까지 루프내의 동작을 수행!



Problems 1

 Is a given undirected graph bicolorable?



Problem 2

 input: 4 digits number; S1 S2 S3 S4

 each digit can increment/decrement by one

 find minimal number of dec/inc operations to reach a target four 
digits number 

 there are n forbidden digits where you should not reach at during 
operations


