
Graph Algorithm

Topological Sort

 Definition

 A topological sort of a DAG G is a linear ordering of all its
vertices such that if G contains a link (u,v), then node u
appears before node v in the ordering

b

c a

d

b

c a

d

1

2 3

4

Algorithm Example

 find source nodes (indegree = 0)

 if there is no such node, the graph is NOT DAG

c

a

b

e

d

f

in_deg=1

in_deg=0

in_deg=2

in_deg=1

in_deg=3

in_deg=1 Queue

Sorted: -

c

 span c; decrement in_deg of a, b, e

 store a in Queue since in_deg becomes 0

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=1

in_deg=1

in_deg=2

in_deg=1 Queue

Sorted: c

c

a

 span a; decrement in_deg of b, f

 store b, f in Queue since ...

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=2

in_deg=1 Queue

Sorted: c a

a

b

f

 span b; store d in Queue

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=2

in_deg=0 Queue

Sorted: c a b

b

f

d

 span f; decrement in_deg of e
 no node with in_deg = 0 is found

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=1

in_deg=0 Queue

Sorted: c a b f

f

d

 span d; store e in Queue.

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0 Queue

Sorted: c a b f d

d

e

 span e; Queue is empty

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0 Queue

Sorted: c a b f d e

e

Example Algorithm Summary

 Based on indegree of each vertex
 if it is 0, this node is the first one in the sorted list

 span this node
 move this node from Queue to the sorted list

 find nodes edged from this node

 decrement indegrees of them

 It is so similar to BFS
 can you do it like DFS?

입력차수 ‘0’인 노드에서 시작!

노드 y와 연결된 노드의 입력차수를 하나씩 감소!

입력차수가 ‘0’인 노드가 생성되면 큐에 저장!

큐가 비워질 때 까지 루프내의 동작을 수행!

Degrees Summary

 number of edges connected to a vertex

 for undirected graphs

 sum of all degrees = 2 X edges

 the number of nodes with odd numbered degrees is even?

 for directed graph

 sum of in-degree = sum of out-degree

Conectivity

 connected

 there exists a path between every pair of vertices

 articulation vertex

 deleting this vertex makes the graph disconnected

 if a graph does not have any such vertex is biconnected

 deleting a bridge edge makes the graph disconnected

Cycles

 A tree does not have a cycle

 Eulerian cycle

 a tour that visits every edge exactly once

 Hamiltonian cycle (path)

 a tour that visits every vertex exactly once

 Given a graph G = (V, E) and tree T = (V, E)
 E  E

 for all (u, v) in E u, v  V

 for all connected graph, there exists a spanning tree

 A spanning tree can be constructed using DFS or BFS

s

2

5

4

7

8

3 6 9

s

2

5

4

7

8

3 6 9

0

1

1

1

2

2

3

3

3

Spanning Tree

Minimal Spanning Tree

 sum of edge weights is minimal

 if there is no weight

 number of edges is minimal

 why is it so important?

 search space is minimal for most problems

Example of MST: Prim’s Algorithm

1. Vertex D has been chosen as a starting point
① Vertices A, B, E, F are connected to D through a single edge.
② A is the nearest to D and thus chosen as the 2nd vertex along with the

edge AD

2. The next vertex chosen is the vertex nearest to either D or A. So the
vertex F is chosen along with the edge DF

3. same as 2, Vertex B is chosen.

4. among C, E, G, E is chosen.

5. among C, G, C is chosen.

6. G is the only remaining vertex. E is chosen.

7. The finally obtained minimum spanning tree

 the total weight is 39

dist: array of distances from the source to each vertex
edges: array indicating, for a given vertex, which vertex in the tree it is closest to
i: loop index
F: list of finished vertices
U: list or heap of unfinished vertices

/* initialization */

for i=1 to |V|

dist[i] = INFINITY

edges[i] = NULL

end for

pick a vertex s to be the seed for the MST

dist[s] = 0

while(F is missing a vertex)

pick the vertex v in U with the shortest edge and add v to F

for each edge of v, (v1, v2)

if (length(v1, v2) < dist[v2])

dist[v2] = length(v1, v2)

edges[v2] = v1

possibly update U, depending on implementation

end if

end for

end while

/* this loop looks through every neighbor of v and checks to see

if that neighbor could reach the MST more cheaply through v

than by linking a previous vertex

Dijkstra’s Algorithm

 Goal: Find the shortest path from s to t

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

All Pairs Shortest Paths

 Use Dijkstra’s method for all the vertices

 complexity?

 Floyd’s method

 Given the adjacency matrix with vertices numbered (1..n)

Network Flow (Today’s Problem)

 Think edges as pipes

 what’s the maximum
flow from node 1 to
node 5?

