Graph Algorithm

Topological Sort

s Definition

s A topological sortof a DAG Gis a linear ordering of all its
vertices such that if & contains a link (u,v), then node u
appears before node v in the ordering

Algorithm Example

find source nodes (indegree = 0)

= if there is no such node, the graph is NOT DAG

in_deg=1

in_deg=1

in_deg=0 in_deg

in_deg=2

Sorted: -

in_deg=1

Queue

span ¢; decrement in_deg of a, b, e
= store ain Queue since in_deg becomes 0

in_deg=0

in_deg=1

in_deg=1

Sorted: ¢

in_deg=1

span a; decrement in_deg of b, f
= storeb, fin Queue since...

in_deg=0

in_deg=0 in_deg

in_deg=0

in_deg=0

Sorted: ¢ a

span b; store d in Queue

in_deg=0

in_deg=0 in_deg

in_deg=0

in_deg=0

Sorted: ¢c a b

span f; decrement in_deg of e
= nonode with in_deg = 0 is found

in_deg=0

in_deg=0

in_deg=0

Sorted: c a bt

span d; store e in Queue.

in_deg=0 in_deg=0

in_deg=0 in_deg=0

Sorted: c abtfd

span e; Queue is empty

in_deg=0 in_deg=0

in_deg=0 in_deg=0 Queue

Sorted: c abfde

Example Algorithm Summary

= Based on indegree of each vertex
» ifitis O, this node is the first one in the sorted list

= span this node
= move this node from Queue to the sorted list
» find nodes edged from this node
=« decrement indegrees of them

m [tis so similar to BFS
= can you do it like DFS?

Ec—psart (graph *g, int sorted[]) compute_indegrees(graph *g, int in[])
.[

int indegree [MAXV]; int i,j; /* counters */

queue zeroin; _ _ _ _ o

int x, v; “ for (i=1; i<=g->nvertices; i++) in[i] = 0;

int 1, j; . for (i=1; i<=g->nvertices; i++)

for (j=0; j<g->degreel[il; j++) : '
compute_indegrees(g,indegree) ; in[g->edges[i][j] 1 ++;
}
UERT ‘02 ==0M AIE!

init_queue(&zeroin);
for (i=1; i<=g->nvertices; i++)

if (indegree[i] == 0) enqueue(&zeroin,i);

s 2

774 HIJE mj 71X] R=Ljo| S=

j=0;
while (empty(&zeroin) == FALSE) {
j = 3+
x = dequeue(&zeroin);
sorted[j] = x;
for (i=0; i<g->degree[x]; i++) {
y = g—>edges [x] [i];
indegree[y] --; eyl E L=9o| QIEXIE SILI
if (indegreely] == 0) enqueue(&zeroin,y);
IRt ‘02 =7 MME|IH Fojl K=

8 ZEA)

oY

}

if (j '= g->nvertices)
printf("Not a DAG -- only %d vertices found\n",j);

Degrees Summary

= number of edges connected to a vertex

» for undirected graphs

= sum of all degrees = 2 X edges

= the number of nodes with odd numbered degrees is even?
s for directed graph

= sum of in-degree = sum of out-degree

Conectivity

m connected

= there exists a path between every pair of vertices

= articulation vertex
= deleting this vertex makes the graph disconnected
= if a graph does not have any such vertex is biconnected
= deleting a bridge edge makes the graph disconnected

Cycles

= Atree does not have a cycle
= Eulerian cycle
= a tour that visits every edge exactly once

= Hamiltonian cycle (path)

= a tour that visits every vertex exactly once

Spanning Tree

= GivenagraphG= (V,E)andtree T = (V, E’)
« E'CE
» forall(u,v)inE'uveV
= for all connected graph, there exists a spanning tree

= A spanning tree can be constructed using DFS or BFS

Minimal Spanning Tree

= sum of edge weights is minimal
» if there is no weight

= number of edges is minimal
= why is it so important?

= search space is minimal for most problems

Example of MST: Prim’s Algorithm

1. Vertex D has been chosen as a starting point
@ Vertices A, B, E, F are connected to D through a single edge.

2 Aisthe nearest to D and thus chosen as the 2" vertex along with the
edge AD

2. The next vertex chosen is the vertex nearest to either D or A. So the
vertex F is chosen along with the edge DF

A

same as 2, Vertex B is chosen.

A®

7

+. amongC, E, G, E is chosen.

A

5. among C, G, Cis chosen.

A

6. G 1isthe only remaining vertex. E is chosen.

A

7. The finally obtained minimum spanning tree
= the total weight is 39

A

dist: array of distances from the source to each vertex

edges: array indicating, for a given vertex, which vertex in the tree it is closest to
i: loop index

F: list of finished vertices

U: list or heap of unfinished vertices

[* initialization */
for i=1 to VI
dist[i] = INFINITY
edges[i] = NULL
end for
pick a vertex s to be the seed for the MST
dist[s] =0
while(F is missing a vertex)
pick the vertex v in U with the shortest edge and add v to F

for each edge of v, (w' Vz) [* this loop looks through every neighbor of v and checks to see

if (length(v1, v2) < dist[v2]) if that neighbor could reach the MST more cheaply through v
dist[v2] = length(v1, v2) than by linking a previous vertex
edges[v2] = v1
possibly update U, depending on implementation
end if
end for

end while

Dijkstra’s Algorithm

= Goal: Find the shortest path from sto t

All Pairs Shortest Paths

= Use Dijkstra’s method for all the vertices
= complexity?

= Floyd’s method

s Given the adjacency matrix with vertices numbered (1..n)

1-1-"7[;?.:_;{]‘!“ = 111i11{1-1"?[i;j]k_1e Wi, k:k_l T 1.{.-’[,{3:‘;']*_1}

Network Flow (Today’s Problem)

= Think edges as pipes

= what’s the maximum

35

flow from node 1 to
node 5?

20

30

