
Graph Algorithm



Topological Sort

 Definition

 A topological sort of a DAG G is a linear ordering of all its 
vertices such that if G contains a link (u,v), then node u
appears before node v in the ordering 
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Algorithm Example

 find source nodes (indegree = 0)

 if there is no such node, the graph is NOT DAG
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 span c; decrement in_deg of a, b, e

 store a in Queue since in_deg becomes 0
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 span a; decrement in_deg of b, f

 store b, f in Queue since ...
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 span b; store d in Queue
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 span f; decrement in_deg of e
 no node with in_deg = 0 is found
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 span d; store e in Queue.

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0 Queue

Sorted:  c  a  b  f  d

d

e



 span e; Queue is empty
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Example Algorithm Summary

 Based on indegree of each vertex
 if it is 0, this node is the first one in the sorted list

 span this node
 move this node from Queue to the sorted list

 find nodes edged from this node

 decrement indegrees of them

 It is so similar to BFS
 can you do it like DFS?



입력차수 ‘0’인 노드에서 시작!

노드 y와 연결된 노드의 입력차수를 하나씩 감소!

입력차수가 ‘0’인 노드가 생성되면 큐에 저장!

큐가 비워질 때 까지 루프내의 동작을 수행!



Degrees Summary

 number of edges connected to a vertex

 for undirected graphs

 sum of all degrees = 2 X edges

 the number of nodes with odd numbered degrees is even?

 for directed graph

 sum of in-degree = sum of out-degree



Conectivity

 connected

 there exists a path between every pair of vertices

 articulation vertex

 deleting this vertex makes the graph disconnected

 if a graph does not have any such vertex is biconnected

 deleting a bridge edge makes the graph disconnected



Cycles

 A tree does not have a cycle

 Eulerian cycle

 a tour that visits every edge exactly once

 Hamiltonian cycle (path)

 a tour that visits every vertex exactly once



 Given a graph G = (V, E) and tree T = (V, E)
 E  E 

 for all (u, v) in E u, v  V

 for all connected graph, there exists a spanning tree

 A spanning tree can be constructed using DFS or BFS
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Spanning Tree



Minimal Spanning Tree

 sum of edge weights is minimal

 if there is no weight

 number of edges is minimal

 why is it so important?

 search space is minimal for most problems



Example of MST: Prim’s Algorithm



1. Vertex D has been chosen as a starting point
① Vertices A, B, E, F are connected to D through a single edge.
② A is the nearest to D and thus chosen as the 2nd vertex along with the 

edge AD



2. The next vertex chosen is the vertex nearest to either D or A. So the 
vertex F is chosen along with the edge DF



3. same as 2, Vertex B is chosen.



4. among C, E, G, E is chosen.



5. among C, G, C is chosen.



6. G is the only remaining vertex. E is chosen.



7. The finally obtained minimum spanning tree

 the total weight is 39



dist: array of distances from the source to each vertex
edges: array indicating, for a given vertex, which vertex in the tree it is closest to
i: loop index
F: list of finished vertices
U: list or heap of unfinished vertices

/* initialization */

for i=1 to |V|

dist[i] = INFINITY

edges[i] = NULL

end for

pick a vertex s to be the seed for the MST

dist[s] = 0

while(F is missing a vertex) 

pick the vertex v in U with the shortest edge and add v to F

for each edge of v, (v1, v2)

if (length(v1, v2) < dist[v2])

dist[v2] = length(v1, v2)

edges[v2] = v1

possibly update U, depending on implementation

end if

end for

end while

/* this loop looks through every neighbor of v and checks to see

if that neighbor could reach the MST more cheaply through v

than by linking a previous vertex



Dijkstra’s Algorithm

 Goal: Find the shortest path from s to t
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All Pairs Shortest Paths

 Use Dijkstra’s method for all the vertices

 complexity?

 Floyd’s method

 Given the adjacency matrix with vertices numbered (1..n)



Network Flow (Today’s Problem)

 Think edges as pipes

 what’s the maximum 
flow from node 1 to 
node 5?


