Grids Geometry Computational Geometry

Grids

- You will encounter many problems whose solutions need grid representation
 - map
 - VLSI layout
 - the most natural way to carve space into regions
- regular pattern
- rectangular or rectilinear grids are common
 - but sometimes you will see triangulr or hexagonal grids

Rectilinear Grids

- each cell is defined by horizontal and vertical lines
- spacing between lines can be
 - uniform
 - non-uniform
- three dimensional grid is difficult to visualize

Graph Representation of Grid

- Grid is a graph (V, E)
 - each vertex contains information
 - city, village, transistor, ..
 - each edge represents relationship between vertices
 - can be 2D, 3D, 4D, ...
- Traversal
 - row major
 - column major
 - snake
 - diagonal

Dual Graphs

- m[i][j] can be either
 - a vertex
 - a face
 - Any one can be transformed into the other
 - proof?
- The four-color theorem
 - the map and the graph to solve the problem are different
- How can you represent weights on edges?

Triangular Lattices

- a vertex needs to be assigned coordinates
 - (x, y) is good enough?
 - if edges are removed, it looks like a grid
- Duality?
- Geometrical coordinates

$$(x_g, y_g) = (d(x_t + (y_t \cos(60^{\circ}))), dy_t \sin(60^{\circ}))$$

Hexagonal Lattices

- It is a subset of a triangular lattice
 - remove every other vertex
- Interesting properties
 - it is the roundest polygon to fill the space
 - per space/perimeter
 - a circle is the best

Representation

- for rectangular solution, additional coordinates are needed
 - (3,1) is better be at the straight above (1, 1)

Exercise

- Dish Packing
 - How many dishes can be places in a box?

- Flying path
 - find the shortest flying distance from Seoul to Bagdad

Problem 1: Star

A board contains 48 triangular cells. In each cell is written a digit in a range from 0 through 9. Every cell belongs to two or three lines. These lines are marked by letters from A through L. See the figure below, where the cell containing digit 9 belongs to lines D, G, and I and the cell containing digit 7 belongs to lines B and I.

Problem 2: Convert coordinate numbers

Geometry

- You are supposed to know enough geometry
- How can you apply this knowledge to solve problems?
 - even a simple solution with pencil and paper needs severe elaboration for a program
- You should be familiar with two disciplines
 - geometry
 - representation of geometric problem/solution as a software program

Lines

representations

```
two points: (x1, y1) and (x2, y2)
a single point and a slope: y = mx + b
   m = (y1 - y2)/(x1 - x2)
   what if (x1-x2) is 0? – needs special attention for division
more general:
                  ax + by + c = 0
       typedef struct {
           double a;
           double b; // default value is 1
           doublec;
       } line
```

any one of the above can be converted to any other

Excercises

find an intersection of two lines

$$l_1: y = m_1x + b_1$$
 and $l_2: y_2 = m_2x + b_2$

- check if they are parallel
- else find

$$x = \frac{b_2 - b_1}{m_1 - m_2}, \qquad y = m_1 \frac{b_2 - b_1}{m_1 - m_2} + b_1$$

- what else?
 - angles of two lines
 - closest point on a line
 - rays half line with an origin

Triangles and Trigonometry

- angles: use radians since most libraries use them
- make yourself comfortable with terminologies
 - right triangle
 - perpendicular lines
 - internal/external angle
 - equilateral
 - hypotenuse

Remember them?

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Triangle Area

singed triangle area

$$2 \cdot A(T) = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} = a_x b_y - a_y b_x + a_y c_x - a_x c_y + b_x c_y - c_x b_y$$

Circles

representation

- formula: $r^2 = (x x_c)^2 + (y y_c)^2$
- problems
 - tangent line
 - intersection points

Excercise

- find the travel distance
 - 1. find circles intersecting the s-t line
 - 2. find the length of the chord
 - 3. compute the arc length

Libraries

```
#include <math.h>

double cos(double x);  /* compute the cosine of x radians */
double acos(double x);  /* compute the arc cosine of [-1,1] */

double sin(double x);  /* compute the sine of x radians */
double asin(double x);  /* compute the arc sine of [-1,1] */

double tan(double x)  /* compute the tangent of x radians */
double atan(double x);  /* compute the principal arctan of x */
double atan2(double y, double x);  /* compute the arc tan of y/x */
```

Excercise

- 50- cm square plate
- place a circle of 5 cm to contain most chips

Computational Geometry

- You need to handle geometry data
 - graphics
 - navigation
 - CAD
- Objects are usually
 - lines and polygones

- computational geometry deal with them using a computer
 - the most fascinating and growing area in mathematical sciences

Line Segments

a portion of a line

```
typedef struct {
     point p1, p2;
} segment;
```

- Are two segments intersect?
 - first, deal with degeneracy cases
 - parallel
 - total overlap

Polygons

definition

a closed chain of non-intersecting line segments

convex

- all internal angles are acute
- "singed triangle are function" tests if a point is left or right of a line

```
bool ccw(point a, point b, point c)
{
     double signed_triangle_area();
     return (signed_triangle_area(a,b,c) > EPSILON);
}
```

Convex Hulls

- similar to sorting
- The smallest polygon containing a set of points

- find the leftmost-lowest point (origin)
- sort points according to angles to the origin
- add one by one
- be careful of degeneracy

Finding area of a polygon

- triangulation
 - convex is easy
 - then, make it a convex
- ear cutting method
 - find an ear, calculate its area
 - do this until there remains a triangle
- How to test if a point is inside a polygon?
- What if a chord of the ear cuts other segment of the polygon?
 - test if any vertex is within an ear
 - better solution?

Jordan Curve Theorem

Lattice Polygon

$$A(P) = I(P) + B(P)/2 - 1$$

- A: area
- I: number of points inside the polygon
- B: number of points on the border
- How to computer I and B
 - B is easy
 - better solution for I?

