Data Structures

Data Structures

s Building blocks of a solution

= |he most important factor in designing a
solution
= A smart selection of data structures wins!

Structure in C (review)

s Array: Collection of Same Types of Data
s Structure: Collection of Different Types of Data

struct {
char name[20];
int age;
float salary;
char hobby[3][20];
} employee;

[* name, age, salary, hobby: members *|
[* employee: variable of type struct {} */

Structure tag name

struct EMPRECORD {
char name[20];
int age;
float salary;
char hobby[3][20];
} employee, former_employee;

[* EMPRECORD: tag name for { } *|

[* struct EMPRECORD
employee, former_employee; */

Member Data Types

= Primitive Types
= Int, float, double, char
= pointer

= Array

= Structure

= other struct
= defining struct

Structure Member Access

struct {
char name[20];
int age;
float salary;
char hobby[3][20];
} employee;

struct_variable.member_name
(&struct_variable)->member _name

[* employee.name *|
[* employee.hobby[3]1[15] */

Struct Member Initialization

struct {
char name[20];
int age;
float salary;
char hobby[3][20];
} employee;

employee.name[] = “Neil Diamond”;
employee hobby[3][] ="tennis and walking”;

employee = {“hong gildong”, 25, 35000.0, “jump”};

Member Name Scope

struct EMPRECORD {
char name[20];
int age;
float salary;
char hobby[3][20];
} employee, former_employee;

struct PERSON {
char name[20];
int age;
char address[30]’
5

[* unique only within a single structure */

Structure: Use Example — IP Packet

IP Header
UDP Header
VI P/ X|M|.. | sequence Number

Timestamp

Svynchronization Source ID

First Contributing Source ID

Last Contributing Source ID

Application Data

Real-Time Packet Transfer Protocol Message Format

Pointer and Self-Referential Structure

struct NODE {

int key; node1
struct NODE *next;
} node node1, node2, node3; 100 |null
node1.key = 100; node2
node2.key = 250;
node3.key = 467; 250 |null

node1.next = node2.next = node3.next =
NULL; node3

’ 467 |null

Example (cont’d)

node1

100

struct NODE {
int key;
struct NODE *next;

} node node1, node2, node3;

node1.next = &node2;
node2.next = &node3;

node2

250 | ~_

node3

467 |null

Member Access via a pointer

node1
100
AN node2
250
~ node3
467 |null
node1.next -> key 250

node1.next -> next -> key 467

Linked Lists (vs. array)

= YOU just saw them
m Pros

= Size of the list can grow/shrink easily
= easy to insert

= easy to delete

= easy to lookup

= COns 7

Stack and Queue

s List

= insert/delete an element at any location
= Queue

= Insert at the head

= delete at the tall
s First—In—First—Out (FIFO)

s Stack

= Only one position to insert and delete
s Last-In—First—Out (LIFO)

Stack

s Operations

push(x, S) inserts x onto a
stack S

pop(S) deletes the most new
elements from S, and returns it
to the callee

initialize(S) creates a new
empty stack

Full(S), Empty(S) check if the
stack S is full/empty

push (A)

push (B)

push (C)

rop ()

push (D)

Stack Implementation

s data structures
= array — S
= pointer — top

= full/empty

#define MAX STACK SIZE 100
struct stack{
int data[MAX STACK SIZE];
int top = -1;
} s1, s2, ...;

int empty(stack s)
{
if (s.top < 0)
return (1) ;
else

return (0);

int full (stack s)
{
if (s.top >= MAX STACK SIZE)
return (1);
else

return (0) ;

int pop(stack s)

{
if empty(s)

return stack empty();

return s.data[s.top--];

void push(int x, stack s)

{
if (full(s)) {

stack_full();

return;

}
s.data[++top] = x;

List, Queue

= queue is similar to a stack
= array vs linked list

s put list Is a little bit difficult
= If we know the maximum size, array will do

= If when we know the size,
= insert/delete ops will waste memory

= linked list looks good, but
« link traverse is expensive

= then, what is your solution?

