## Combinatorics

Combinatorics is a branch of mathematics concerning the study of finite or countable discrete structures

In the past, ad-hoc solutions were available. Now, ....

## Counting Techniques

- product rule
- 5 shirts * 4 pants = total 20 combinations
- sum rule
- if any one is missing from the closet, it is one of 9 clothing pieces
- Inclusion-Exclusion Formula
- $|A \cup B|=|A|+|B|-|A \cap B|$
- $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-$ $|B \cap C|+|A \cap B \cap B|$
- eliminates double counting
- Bijection
- map a member of a set to a member of target set that is to be counted


## More counting techniques

- Permutation
- an arrangement of $n$ items where every item appears exactly once - $n!=\prod_{i=1} \mathrm{i}$
- arrange three letters word using a, b, c
- abc, acb, bac, bca, cab, cba, - 6 words (3!)
- what if letters are reused? (strings)
- aaa, abb, ... - ${ }_{\mathrm{n}} \Pi_{\mathrm{r}}=\mathrm{n}^{r}$
- Subsets
- there are $2^{n}$ subsets of $n$ items
- a, b, c, ab, bc, ac, abc, and an empty set - 8 subsets


## Recurrence Relations

- Recursively defined structures
- tree, list, WFF, ...
- divide conquer algorithms work on them
- recurrence relation
- polynomials $\quad a_{n}=a_{n-1}+1, a_{1}=1 \rightarrow a_{n}=n$
- exponential $a_{n}=2 a_{n-1}, a_{l}=2 \rightarrow a_{n}=2^{n}$
- factorial $\quad a_{n}=n a_{n-1}, a_{l}=1 \rightarrow a_{n}=n$ !


## Binomial Coefficient

- ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{k}}$ - choose k things out of n

$$
n!/((n-k)!k!)
$$

- easy one
- how many ways to form a k-member committee from n people
- Paths across a grid of nX m


## Binomial Coefficient (2)

- coefficient of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$
- what is the coeff of $a^{k} b^{n-k}$ ?
- how many ways to choose $k$ a-terms out of $n$
- $(a+b)^{3}=1 a^{3}+3 a^{2} \mathbf{b}+3 \mathbf{a b}^{2}+1 \mathbf{b}^{3}$
- $(a+b)^{3}=\mathbf{a a a}+3 \mathrm{a} \mathbf{a b}+3 \mathrm{abb}+\mathbf{b b b}$


## Pascal’ s Triangle



- prove that ${ }_{n} C_{k}={ }_{(n-1)} C_{(k-1)}{ }^{+}{ }_{(n-1)} C_{k}$


## Binomial Coefficient(3)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{n!}{(n-k)!k!}
$$

- (n-k)!k! can cause overflow
- ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{k}}={ }_{(\mathrm{n}-1)} \mathrm{C}_{(\mathrm{k}-1)}+{ }_{(\mathrm{n}-1)} \mathrm{C}_{\mathrm{k}}$

case1: this is included same as choosing $k$-1 from $n-1$
case2: not
must choose $k$ from $n-1$


## Stop the recurrence $\quad{ }_{n} C_{k}={ }_{(n-1)} C_{(k-1)}+{ }_{(n-1)} C_{k}$


good ending points

- ${ }_{n} C_{1}=n$
- ${ }_{n} C_{n}=1$
int bc(int n, int k)
\{
if ( $k==1$ ) return( $n$ );
return $b c(n-1, k-1)+b c(n-1, k)$;

$$
{ }_{n} C_{k}={ }_{(n-1)} C_{(k-1)}+{ }_{(n-1)} C_{k}
$$

- safeness
- what about ${ }_{3} \mathrm{C}_{0,2} \mathrm{C}_{5,(-3)} \mathrm{C}_{5}$
- don't we need else part?
- time complexity
- one comparison and one addition (let it be C1)
- let recursion overhead be C2
- $\mathrm{T}(\mathrm{n}, \mathrm{k})=\mathrm{T}(\mathrm{n}-1, \mathrm{k}-1)+\mathrm{T}(\mathrm{n}-1, \mathrm{k})+\mathrm{C} 1+\mathrm{C} 2$


## Finonacci Numbers

$$
\begin{aligned}
& \mathrm{F}_{0}=0 \\
& \mathrm{~F}_{1}=1 \\
& \mathrm{~F}_{n}=\mathrm{F}_{n-1}+\mathrm{F}_{n-2} \quad \text { for } n \geq 2
\end{aligned}
$$

int fb(int $n$ )
\{

$$
\begin{aligned}
& \text { if }(\mathrm{n}<0) \text { ???? } \\
& \text { if }(\mathrm{n}<2)) \text { return }(\mathrm{n}) ; \quad / / \mathrm{f}(0)=0, \mathrm{f}(1)=1 \\
& \text { else return fb }(\mathrm{n}-1)+\mathrm{fb}(\mathrm{n}-2) \text {; }
\end{aligned}
$$

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

## Eulerian Numbers

- the number of permutations of the numbers 1 to $n$ in which exactly $m$ elements are greater than the previous element

$$
\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle=k\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle+(n-k+1)\left\langle\begin{array}{c}
n-1 \\
k-1
\end{array}\right\rangle
$$

- review Stirling Numbers, Partitions


## Induction

$$
T_{n}=2 T_{n-1}+1, T_{0}=0
$$

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~T}_{\mathrm{n}}$ | 0 | 1 | 3 | 7 | 15 | 31 | 63 | 127 | $\ldots$ |

prove/disprove that $\mathrm{T}_{\mathrm{n}}=\mathbf{2 n}^{\mathrm{n}} \mathbf{1}$

## How Many Pieces of Land



$$
(i-1) * i *(i * i-5 * i+18) / 24+1
$$

## Tower of Hanoi



The Four Needle (Peg) Tower of Hanoi

