Combinatorics

Combinatorics is a branch of mathematics concerning the study of finite or countable discrete structures

In the past, ad-hoc solutions were available. Now,

Counting Techniques

- product rule
 - 5 shirts * 4 pants = total 20 combinations
- sum rule
 - if any one is missing from the closet, it is one of 9 clothing pieces
- Inclusion-Exclusion Formula
 - $|A \cup B| = |A| + |B| |A \cap B|$
 - $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |B \cap C| + |A \cap B \cap B|$
 - eliminates double counting
- Bijection
 - map a member of a set to a member of target set that is to be counted

More counting techniques

Permutation

- an arrangement of *n* items where every item appears exactly once - n!=∏ⁿ_{i=1} i
- arrange three letters word using a, b, c
 - abc, acb, bac, bca, cab, cba, 6 words (3!)
- what if letters are reused? (strings)
 - aaa, abb, ... $_{n}\Pi_{r}$ = n^r
- Subsets
 - there are 2^n subsets of *n* items
 - a, b, c, ab, bc, ac, abc, and an empty set 8 subsets

Recurrence Relations

Recursively defined structures

- tree, list, WFF, ...
- divide conquer algorithms work on them
- recurrence relation
 - **polynomials** $a_n = a_{n-1} + 1, a_1 = 1 \rightarrow a_n = n$
 - exponential

$$a_n = 2a_{n-1}, a_1 = 2 \rightarrow a_n = 2^n$$

• factorial $a_n = na_{n-1}, a_1 = 1 \rightarrow a_n = n!$

Binomial Coefficient

• ⁿC_k - choose k things out of n

n!/((n-k)!k!)

easy one

- how many ways to form a k-member committee from n people
- Paths across a grid of n X m

Binomial Coefficient (2)

- coefficient of (a+b)ⁿ
 - what is the coeff of $a^k b^{n-k}$?
 - how many ways to choose k a-terms out of n

•
$$(a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$$

• $(a + b)^3 = aaa + 3aab + 3abb + bbb$

Pascal's Triangle

• prove that ${}_{n}C_{k} = {}_{(n-1)}C_{(k-1)} + {}_{(n-1)}C_{k}$

Binomial Coefficient(3)

$$\left[\begin{array}{c}n\\k\end{array}\right] \quad = \quad \frac{n!}{(n-k)!k!}$$

(n-k)!k! can cause overflow

$$\mathbf{D}_{n}\mathbf{C}_{k} = (n-1)\mathbf{C}_{(k-1)} + (n-1)\mathbf{C}_{k}$$

case1: this is included same as choosing k-1 from n-1 case2: not must choose k from n-1

Stop the recurrence ${}_{n}C_{k} = {}_{(n-1)}C_{(k-1)} + {}_{(n-1)}C_{k}$

good ending points

```
int bc(int n, int k)
{
     if (k == 1) return(n);
     return bc(n-1, k-1) + bc(n-1, k);
}
```

$$_{n}C_{k} = _{(n-1)}C_{(k-1)} + _{(n-1)}C_{k}$$

safeness

- what about ${}_{3}C_{0, 2}C_{5, (-3)}C_{5}$
- don't we need else part?
- time complexity
 - one comparison and one addition (let it be C1)
 - let recursion overhead be C2
 - T(n, k) = T(n-1, k-1) + T(n-1, k) + C1 + C2

Finonacci Numbers

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

the number of <u>permutations</u> of the numbers 1 to *n* in which exactly *m* elements are greater than the previous element

$$\binom{n}{k} = k \binom{n-1}{k} + (n-k+1) \binom{n-1}{k-1}$$

review Stirling Numbers, Partitions

Induction

$T_n = 2T_{n-1} + 1, T_0 = 0$									
n	0	1	2	3	4	5	6	7	
T _n	0	1	3	7	15	31	63	127	

prove/disprove that $T_n = 2^n - 1$

How Many Pieces of Land

Tower of Hanoi

The Four Needle (Peg) Tower of Hanoi