Number Theory

Prime Numbers

Is x a prime? if it is even number, .. else keep dividing factorization base of security • Given $N = P^*Q$ P,Q are unique How many are there?

```
prime_factorization(long x)
ł
        long i;
        long c;
        c = x;
        while ((c % 2) == 0) {
                printf("%ld\n",2);
                c = c / 2;
        }
        i = 3;
        while (i <= (sqrt(c)+1)) {
                 if ((c \% i) == 0) {
                         printf("%ld\n",i);
                         c = c / i;
                 }
                 else
                         i = i + 2;
        }
        if (c > 1) printf("%ld\n",c);
```

If a = bt + r for integers t and r, then gcd(a, b) = gcd(b, r)

- $gcd(34398, 2132) = gcd(34398 \mod 2132, 2132) = gcd(2132, 286)$
 - $gcd(2132, 286) = gcd(2132 \mod 286, 286) = gcd(286, 130)$
 - $gcd(286, 130) = gcd(286 \mod 130, 130) = gcd(130, 26)$
 - $gcd(130, 26) = gcd(130 \mod 26, 26) = gcd(26, 0)$

lcm(x,y) = xy/gcd(x,y)

Modular Arithmetic (Congruences)

$$(x + y) \mod ((x \mod n) + (y \mod n)) \mod n$$

(12 mod 100) - (53 mod 100) = -41 mod 100 = 59 mod 100
 $xy \mod n = (x \mod n)(y \mod n) \mod n$
 $x^y \mod n = (x \mod n)^y \mod n$
division?

Linear Congruence $ax \equiv b \pmod{n}$

Backtracking

N-Queen Problem

4-Queens Problem

Solution for N-Queen

- no solution for n < 4</p>
- n=4 case
 - list all case systematically
 - test each case if it is a solution
 - 16C4 cases n²Cn cases
 - better way?

Backtracking

Solution set

- a vector $a = (a_1, a_2, ..., a_n)$
- 1. let $a = (a_1, ..., a_k)$
- 2. add a possible solution a_{k+1}
- 3. check validity
- 4. if it is a solution, do something
- 5. else check if a_{k+1} can generate more possible solutions
- 6. if yes, add them to the solution vector
- 7. else remove a_{k+1}

```
/* found all solutions yet? */
bool finished = FALSE;
backtrack(int a[], int k, data input)
ſ
        int c[MAXCANDIDATES];
                                     /* candidates for next position */
                                     /* next position candidate count */
        int ncandidates;
                                     /* counter */
        int i;
        if (is_a_solution(a,k,input))
                process_solution(a,k,input);
        else {
                k = k+1;
                construct_candidates(a,k,input,c,&ncandidates);
                for (i=0; i<ncandidates; i++) {</pre>
                        a[k] = c[i];
                        backtrack(a,k,input);
                        if (finished) return; /* terminate early */
                ٦
```

Backtracking Efficiency

- It is usually correct
- The issue is efficiency
- solution space of the n-queens problem
 - there are n² cells
 - each cell either has a queen (TRUE) or not (FALSE)
 - total combinations 2ⁿ
 - 8-queens problem ~ 1.84 * 10¹⁹
- another solution
 - the 1st queen = 64 cases
 - the 2nd queen = 64 cases
 - the 8th queen = 64 cases
 - TOTAL $64^8 = 2.81 \times 10^{14}$ cases

Prunning

- 6⁴⁸ = 2.81 * 10¹⁴ is still a huge number
- remove invalid case as early as possible
 - no two queens sit on the same cell
 - once a queen is placed, the second will be at a higher numbered cell
 - $_{64}C_8 = 4.426 \times 10^9$
 - can you do it more?
 - 1st queen at the 1st row
 - 2nd queen at the 2nd row
 - 8th queen at the 8th row
 - TOTAL 8⁸ = 1.677 *10⁷ cases
 - how about the column regulation?

2 3 4 0 1 5 7 8 9 6 10 12 13 14 11 15

LLLDRDRDR This puzzle is not solvable.

Tug of War

A tug of war is being arranged for the office picnic. The picnickers must be fairly divided into two teams. Every person must be on one team or the other, the number of people on the two teams must not differ by more than one, and the total weight of the people on each team should be as nearly equal as possible.

Sample Input

Sample Output 190 200