Number Theory

Prime Numbers

= Is X a prime?
« if it is even number, ..
= else keep dividing

= factorization

= base of security
= Given N = P*Q
= P,Q are unique

= How many are there?

prime_factorization(long x)
{

long 1i;

long c;

c = X;

while ((c % 2) == 0) {
printf ("%1d\n",2);
c=c/ 2;

i= 3;
while (i <= (sqrt(c)+1)) {
if ((c % 1) == 0) {
printf ("} 1d\n",i);
c=c/ i;

else
i=1+ 2;

if (¢ > 1) printf("%1ld\n",c);

GCD & LCM

If a = bt + r for integers t and r, then ged(a,b) = ged(b,)

ged(34398,2132) = ged(34398 mod 2132,2132) = ged(2132, 286)
ged(2132,286) ged (2132 mod 286, 286) = ged(286, 130)
ged(286,130) ged(286 mod 130, 130) = ged(130, 26)
ged(130,26) = ged(130 mod 26, 26) = ged(26,0)

lem(z,y) = zy/ged(z,y)

Modular Arithmetic (Congruences)

(r+y) mo ((zr mod n)+ (y mod n)) mod n
(12 mod 100) — (53 mod 100) = —41 mod 100 = 59 mod 100

ry mod n = (r mod n)(y mod n) mod n
rY mod n = (r mod n)¥ mod n
division?

Linear Congruence ar = b(mod n)

Backtracking

N-Queen Problem

4-Queens Problem

=

~

=¥

Qg\}?’
Iy
5

LE:

Solution for N-Queen

= no solution for n < 4

= N=4 case
= list all case systematically
= test each case if it is a solution
= 16C4 cases — n2Cn cases

= better way?

Backtracking

= Solution set
= a vector a = (a,, a,, ..., a,)
. leta=(,, ..., a)
2. add a possible solution a,,,
3. check validity
a. If it is a solution, do something
5. else check if a,,, can generate more possible solutions
6. if yes, add them to the solution vector
7. else remove a_,;,

bool finished = FALSE; /* found all solutions yet? */

backtrack(int a[], int k, data input)

{

int c[MAXCANDIDATES]; /* candidates for next position #*/
int ncandidates; /* next position candidate count */
int i; /* counter */

if (is_a_solution(a,k,input))
process_solution(a,k,input);
else {
k= k+1;
construct_candidates(a,k,input,c,&ncandidates);
for (i=0; i<ncandidates; i++) {
alk] = clil];
backtrack(a,k,input);
if (finished) return; /* terminate early */

Backtracking Efficiency

= It is usually correct
= The issue is efficiency

= solution space of the n-queens problem
=« there are n? cells
= each cell either has a queen (TRUE) or not (FALSE)

= total combinations 2n
= 8-queens problem ~ 1.84 * 1019

= another solution

= the 15t queen = 64 cases
= the 2" queen = 64 cases
=« the 8" queen = 64 cases
= TOTAL 643 = 2.81 * 104 cases

Prunning

= 64 =281 * 10" is still a huge number

= remove invalid case as early as possible
= no two queens sit on the same cell

= once a queen is placed, the second will be at a
higher numbered cell
= 64Cg = 4.426 * 10°
= can you do it more?
= 15t queen at the 15t row
= 2" queen at the 2" row
« 8t queen at the 8 row
= TOTAL 88 = 1.677 *107 cases

= how about the column regulation?

Prunning for 4-Queens Problem

Start

(1)
—% D - —
@ Qz " @ (2, 4> (2, 1\)
Akt \,. -
A& TR\ J
X X X X X

“-'\\ F oo .'\‘ D /
/4.1 \(4.2 (4%)(?4\
Lk _j \ed 2N/

X X X

X

PN (;\ /7 4\]
N2 & k(_' /

15-Puzzle

LLLDRDRDR
This puzzle is not solvable.

Tug of War

A tug of war is being arranged for the office picnic. The picnickers must be fairly
divided into two teams. Every person must be on one team or the other, the number of

people on the two teams must not differ by more than one, and the total weight of the
people on each team should be as nearly equal as possible.

Sample Input
1

3
100
90
200

Sample Output
190 200

