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Graph Usage

 I want to visit all the known famous places 
starting from Seoul ending in Seoul

 Knowledge: distances, costs

 Find the optimal(distance or cost) path



Graph Theory

 Many problems are mapped to graphs

 traffic 

 VLSI circuits

 social network

 communication networks

 web pages relationship

 Problems

 how can a problem be represented as a graph?

 how to solve a graph problem?



Graph Notations

 A graph G = (V, E)

 V is a set of vertices(nodes)

 E is a set of edges
 E = (x, y) where x, y  V

 ordered or unordered pairs of vertices from V

 Examples
 map

 landmarks or cities are vertices

 roads are edges

 program analysis
 a line of program statement is a vertice

 the next line to be executed is connected thru edge



Graphs

 A graph G = (V, E) 

 is undirected if edge (x, y)  E implies that (y, x) 
E, too.

 is directed if not

 Most graph problems are undirected
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Graphs

 weighted or unweighted

w x

zy

5

3

1

7

w x

zy

1

1

1

1



Graphs

 acyclic – a graph without any cycle

 undirected (free tree)

 directed (DAG) – the most important one



Graph Representation

 G = (V, E), |V|=n and |E|=m

 adjacency-matrix

 n x n matrix M
M[i, j] = 1, if (i, j)  E

0, if (i, j)  E

 good
 easy to check if an edge (i, j) is in E

 easy to add/remove edges

 bad
 space overhead if n >> m 



Examples

 the City (Manhattan) – not so big area
 15 avenues and 200 streets

 3000 vertices and 6000 edges

 3000 X 3000 = 9,000,000 cells

 VLSI chip with 15 million transistors
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Graph Representation 2

 space efficient for sparse graphs

 problems?
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Graph Representation 3

 mixed version

 use array instead of linked lists

 looks good? alternatives?
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Terminologies - adjacency

 clear for undirected grapg

 for directed graph
 2 is adjacent to 1

 1 is NOT adjacent to 2

 make a formal definition

 if y is adjacent to x, we write x  y
 1  2
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Terminologies 2 - incident

 directed
 an edge (x, y) is incident from (or leaves) vertex x

 and is incident to (or enters) vertex y.

 undirected
 an edge (x, y) is incident on vertices x and y

 ex.

 the edges incident on vertex 2: (1, 2), (2, 5)



Terminologies 3

 Degree of a vertex
 undirected

 the number of edges incident on it.
ex. vertex 2 in the graph has degree 2.

 A vertex whose degree is 0, 
i.e., vertex 4 in the graph, is isolated.

 directed

 out-degree of a vertex : the number of edges leaving it

 in-degree of a vertex : the number of edges entering it

 degree of a vertex : its in-degree + out-degree

 ex. – vertex 2 in the right graph

 in-degree = 2

 out-degree = 3

 degree = 2+3 = 5
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Adjacency matrix structure

 only if you know MAXDEGREE

 otherwise, MAXV X MAXV

 symmetric for undirected graph
 waste of space



adding an edge - insert_edge(g, 1, 2, false)
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Graph Traversal

 visit vertices and edges

 all of them for completeness

 exactly once for efficiency

 Breadth First Search (BFS)

 Depth First Search (DFS)



BFS
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BFS Algorithm

BFS(G, s)

for each vertex u  V – {s}

do color[u]  GRAY

d[u] 

[u]  NIL

color[s]  BLUE

d[s]  0

[s]  NIL

ENQUEUE(Q, s)

while (Q  )

do u  DEQUEUE(Q)

for each v  Adj[u]

do if color[v]  GRAY 

then color[v]  BLUE

d[v]  d[v] + 1

[v]  u

ENQUEUE(Q, v)

color[u]  GREEN

Initialization



DFS

 similar to Backtracking
 go as deep as you can
 next one is your siblings

 stack is an ideal candidate

DFS(G, v)

for all edges e incident on v

do if edge e is unexplored then

w  opposite(v, e) // return the end point of e 
distant to v

if vertex w is unexplored then

mark e as a discovered edge

recursively call DFS(G, w)

else

mark e as a back edge



Adjacency Lists

A:  F G

B:  A I

C:  A D

D:  C F

E:  C D G

F:  E:

G:  :

H:  B:

I:  H:
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Function call stack:

assume “left child first”



Topological Sort

 Definition

 A topological sort of a DAG G is a linear ordering of 
all its vertices such that if G contains a link (u,v), 
then node u appears before node v in the ordering 
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Algorithm Example

 find source nodes (indegree = 0)

 if there is no such node, the graph is NOT DAG
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 span c; decrement in_deg of a, b, e

 store a in Queue since in_deg becomes 0
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 span a; decrement in_deg of b, f

 store b, f in Queue since ...
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 span b; store d in Queue

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=2

in_deg=0 Queue

Sorted:  c  a  b

b

f

d



 span f; decrement in_deg of e
 no node with in_deg = 0 is found
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 span d; store e in Queue.
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 span e; Queue is empty
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Example Algorithm Summary

 Based on indegree of each vertex
 if it is 0, this node is the first one in the sorted list

 span this node
 move this node from Queue to the sorted list

 find nodes edged from this node

 decrement indegrees of them

 It is so similar to BFS
 can you do it like DFS?



입력차수 ‘0’인 노드에서 시작!

노드 y와 연결된 노드의 입력차수를 하나씩 감소!

입력차수가 ‘0’인 노드가 생성되면 큐에 저장!

큐가 비워질 때 까지 루프내의 동작을 수행!



Problems 1

 Is a given undirected graph bicolorable?



Problem 2

 input: 4 digits number; S1 S2 S3 S4

 each digit can increment/decrement by one

 find minimal number of dec/inc operations to reach a target four 
digits number 

 there are n forbidden digits where you should not reach at during 
operations


