Graph Algorithm

Topological Sort

- Definition
- A topological sort of a DAG Gis a linear ordering of all its vertices such that if G contains a link (u, v), then node u appears before node v in the ordering

Algorithm Example

- find source nodes (indegree $=0$)
- if there is no such node, the graph is NOT DAG

Sorted: -

- span c; decrement in_deg of a, b, e
- store a in Queue since in_deg becomes 0

Sorted: c

- span a; decrement in_deg of b,f
- store b, f in Queue since ...

Sorted: ca

- span b; store d in Queue

Sorted: cab

- span f; decrement in_deg of e
- no node with in_deg $=0$ is found

Sorted: cabit

- spand; store e in Queue.

Sorted: cabld

- span e; Queue is empty

Sorted: cablde

Example Algorithm Summary

- Based on indegree of each vertex
- if it is 0 , this node is the first one in the sorted list
- span this node
- move this node from Queue to the sorted list
- find nodes edged from this node
- decrement indegrees of them
- It is so similar to BFS
- can you do it like DFS?

```
topsort(graph *g, int sorted[])
    int indegree[MAXV];
    queue zeroin;
    int x, y;
    int i, j;
    compute_indegrees(g,indegree);
    init_queue(&zeroin);
    for (i=1; i<=g->nvertices; i++)
        if (indegree[i] == 0) enqueue(&zeroin,i); 이ᄇ려ᄀ차수 '0'이ᄂ 노드에서 시자ᄀ!
    j=0;
    while (empty(&zeroin) == FALSE) { 큐가 비워지ᄅ 때 까지 루프내의 도ᄋ자ᄀ으ᄅ 수해ᄋ!
        j = j+1;
        x = dequeue(&zeroin);
        sorted[j] = x;
        for (i=0; i<g->degree[x]; i++) {
            y = g->edges[x][i];
            indegree[y] --; 노드 y와 여ᄂ겨ᄅ되ᄂ 노드의 이ᄇ려ᄀ차수르ᄅ 하나씨ᄀ 가ᄆ소!
                    if (indegree[y] == 0) enqueue(&zeroin,y);
            }
    }
    if (j != g->nvertices)
        printf("Not a DAG -- only %d vertices found\n",j);

\section*{Degrees Summary}
- number of edges connected to a vertex
- for undirected graphs
- sum of all degrees \(=2 \mathrm{X}\) edges
- the number of nodes with odd numbered degrees is even?
- for directed graph
- sum of in-degree = sum of out-degree

\section*{Conectivity}
- connected
- there exists a path between every pair of vertices
- articulation vertex
- deleting this vertex makes the graph disconnected
- if a graph does not have any such vertex is biconnected
- deleting a bridge edge makes the graph disconnected

\section*{Cycles}
- A tree does not have a cycle
- Eulerian cycle
- a tour that visits every edge exactly once
- Hamiltonian cycle (path)
- a tour that visits every vertex exactly once

\section*{Spanning Tree}
- Given a graph \(\mathrm{G}=(\mathrm{V}, \mathrm{E})\) and tree \(\mathrm{T}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)\)
- \(\mathrm{E}^{\prime} \subset \mathrm{E}\)
- for all ( \(u, v\) ) in \(E^{\prime} u, v \in V\)
- for all connected graph, there exists a spanning tree

- A spanning tree can be constructed using DFS or BFS

\section*{Minimal Spanning Tree}
- sum of edge weights is minimal
- if there is no weight
- number of edges is minimal
- why is it so important?
- search space is minimal for most problems

\section*{Example of MST: Prim's Algorithm}

1. Vertex D has been chosen as a starting point
(1) Vertices \(\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{F}\) are connected to D through a single edge.
(2) A is the nearest to D and thus chosen as the \(2^{\text {nd }}\) vertex along with the edge AD

2. The next vertex chosen is the vertex nearest to either D or A. So the vertex F is chosen along with the edge DF

3. same as 2, Vertex B is chosen.

4. among C, E, G, E is chosen.

5. among C, G, C is chosen.

6. \(G\) is the only remaining vertex. E is chosen.

7. The finally obtained minimum spanning tree
\(\Rightarrow\) the total weight is 39

```

dist: array of distances from the source to each vertex
edges: array indicating, for a given vertex, which vertex in the tree it is closest to
i: loop index
F: list of finished vertices
U: list or heap of unfinished vertices
/* initialization */
for i=1 to |V|
dist[i] = INFINITY
edges[i] = NULL
end for
pick a vertex s to be the seed for the MST
dist[s] = 0
while(F is missing a vertex)
pick the vertex v in U with the shortest edge and add v to F
for each edge of v, (v1,v2)
/* this loop looks through every neighbor of v and checks to see
if (length(v1, v2) < dist[v2]) if that neighbor could reach the MST more cheaply through v
dist[U2] = length(V1, U2) than by linking a previous vertex
edges[v2] = v1
possibly update U, depending on implementation
end if
end for
end while

```

\section*{Dijkstra's Algorithm}
- Goal: Find the shortest path from \(s\) to \(t\)


\section*{All Pairs Shortest Paths}
- Use Dijkstra's method for all the vertices
- complexity?
- Floyd's method
- Given the adjacency matrix with vertices numbered (1..n)
\[
W[i, j]^{k}=\min \left(W[i, j]^{k-1}, W[i, k]^{k-1}+W[k, j]^{k-1}\right)
\]

\section*{Network Flow (Today's Problem)}
- Think edges as pipes
- what's the maximum flow from node 1 to node 5?
```

