Graph Algorithm

Topological Sort

Definition

A topological sort of a DAG G is a linear ordering of all its vertices such that if G contains a link (u,v), then node u appears before node v in the ordering

Algorithm Example

- find source nodes (indegree = 0)
 - if there is no such node, the graph is NOT DAG

Sorted: -

- span c; decrement in_deg of a, b, e
 - store a in Queue since in_deg becomes 0

Sorted: c

- span a; decrement in_deg of b, f
 - store b, f in Queue since ...

Sorted: c a

span b; store d in Queue

Sorted: c a b

- span f; decrement in_deg of e
 - no node with in_deg = 0 is found

Sorted: c a b f

span d; store e in Queue.

Sorted: c a b f d

span e; Queue is empty

Sorted: c a b f d e

Example Algorithm Summary

- Based on indegree of each vertex
 - if it is 0, this node is the first one in the sorted list
 - span this node
 - move this node from Queue to the sorted list
 - find nodes edged from this node
 - decrement indegrees of them
- It is so similar to BFS
 - can you do it like DFS?

```
topsort(graph *g, int sorted[])
                                         compute_indegrees(graph *g, int in[])
{
                                         ſ
        int indegree[MAXV];
                                                int i,j;
                                                                           /* counters */
        queue zeroin;
                                                for (i=1; i<=g->nvertices; i++) in[i] = 0;
        int x, y;
        int i, j;
                                                for (i=1; i<=g->nvertices; i++)
                                                       for (j=0; j<g->degree[i]; j++) ;
        compute_indegrees(g,indegree);
                                                          in[ g->edges[i][j] ] ++;
        init_queue(&zeroin);
                                         }
        for (i=1; i<=g->nvertices; i++)
                if (indegree[i] == 0) enqueue(&zeroin,i); 입력차수 '0'인 노드에서 시작!
        j=0;
        while (empty(&zeroin) == FALSE) {
                                             큐가 비워질 때 까지 루프내의 동작을 수행!
                j = j+1;
                x = dequeue(&zeroin);
                sorted[j] = x;
                for (i=0; i<g->degree[x]; i++) {
                        y = g \rightarrow edges[x][i];
                                             노드 y와 연결된 노드의 입력차수를 하나씩 감소!
                        indegree[y] --;
                        if (indegree[y] == 0) enqueue(&zeroin,y);
                }
                                             입력차수가 '0'인 노드가 생성되면 큐에 저장!
        }
        if (j != g->nvertices)
                printf("Not a DAG -- only %d vertices found\n",j);
}
```

Degrees Summary

- number of edges connected to a vertex
- for undirected graphs
 - sum of all degrees = 2 X edges
 - the number of nodes with odd numbered degrees is even?
- for directed graph
 - sum of in-degree = sum of out-degree

Conectivity

connected

- there exists a path between every pair of vertices
- articulation vertex
 - deleting this vertex makes the graph disconnected
 - if a graph does not have any such vertex is biconnected
 - deleting a bridge edge makes the graph disconnected

Cycles

- A tree does not have a cycle
- Eulerian cycle
 - a tour that visits every edge exactly once
- Hamiltonian cycle (path)
 - a tour that visits every vertex exactly once

Spanning Tree

- Given a graph G = (V, E) and tree T = (V, E')
 - $E' \subset E$
 - for all (u, v) in E' $u, v \in V$
 - for all connected graph, there exists a spanning tree

• A spanning tree can be constructed using DFS or BFS

Minimal Spanning Tree

- sum of edge weights is minimal
- if there is no weight
 - number of edges is minimal
- why is it so important?
 - search space is minimal for most problems

Example of MST: Prim's Algorithm

- 1. Vertex D has been chosen as a starting point
 - 1 Vertices A, B, E, F are connected to D through a single edge.
 - 2 A is the nearest to D and thus chosen as the 2nd vertex along with the edge AD

2. The next vertex chosen is the vertex nearest to either D or A. So the vertex **F** is chosen along with the edge DF

3. same as 2, Vertex B is chosen.

4. among C, E, G, E is chosen.

5. among C, G, C is chosen.

6. G is the only remaining vertex. E is chosen.

7. The finally obtained minimum spanning tree \Rightarrow the total weight is 39


```
dist: array of distances from the source to each vertex
edges: array indicating, for a given vertex, which vertex in the tree it is closest to
i: loop index
F: list of finished vertices
U: list or heap of unfinished vertices
/* initialization */
for i=1 to |V|
      dist[i] = INFINITY
      edges[i] = NULL
end for
pick a vertex s to be the seed for the MST
dist[s] = 0
while(F is missing a vertex)
      pick the vertex v in U with the shortest edge and add v to F
      for each edge of v, (v1, v2)
                                               /* this loop looks through every neighbor of v and checks to see
             if (length(v1, v2) < dist[v2])
                                                if that neighbor could reach the MST more cheaply through v
                    dist[v2] = length(v1, v2)
                                               than by linking a previous vertex
                    edges[v2] = v1
                    possibly update U, depending on implementation
             end if
      end for
end while
```

Dijkstra's Algorithm

• Goal: Find the shortest path from s to t

All Pairs Shortest Paths

- Use Dijkstra's method for all the vertices
 complexity?
- Floyd's method
 - Given the adjacency matrix with vertices numbered (1..n)

 $W[i,j]^{k} = \min(W[i,j]^{k-1}, W[i,k]^{k-1} + W[k,j]^{k-1})$

Network Flow (Today's Problem)

Think edges as pipes

 what's the maximum flow from node 1 to node 5?

