Graph Algorithm
Topological Sort

Definition

- A *topological sort* of a DAG G is a linear ordering of all its vertices such that if G contains a link (u,v), then node u appears before node v in the ordering.
Algorithm Example

- find source nodes (indegree = 0)
 - if there is no such node, the graph is NOT DAG
- span c; decrement in_deg of a, b, e
 - store a in Queue since in_deg becomes 0

Sorted: c
- span a; decrement in_deg of b, f
 - store b, f in Queue since ...

Sorted: c a
- span b; store d in Queue

Sorted: c a b
- span f; decrement in_deg of e
 - no node with in_deg = 0 is found

Sorted: c a b f
span d; store e in Queue.
span e; Queue is empty

Sorted: c a b f d e
Example Algorithm Summary

- Based on indegree of each vertex
 - if it is 0, this node is the first one in the sorted list
 - span this node
 - move this node from Queue to the sorted list
 - find nodes edged from this node
 - decrement indegrees of them

- It is so similar to BFS
 - can you do it like DFS?
```c
/**
 * @brief Topological sorting of a Directed Acyclic Graph (DAG).
 * @param g Pointer to the graph structure.
 * @param sorted Pointer to the result array.
 * @return 0 on success, -1 on failure.
 */
int topsort(graph *g, int sorted[])
{
    int indegree[MAXV];
    queue zeroin;
    int x, y;
    int i, j;

    compute_indegrees(g, indegree);
    init_queue(&zeroin);
    for (i=1; i<=g->nvertices; i++)
        if (indegree[i] == 0) enqueue(&zeroin, i);

    j=0;
    while (empty(&zeroin) == FALSE) {
        j = j+1;
        x = dequeue(&zeroin);
        sorted[j] = x;
        for (i=0; i<g->degree[x]; i++) {
            y = g->edges[x][i];
            indegree[y] --;
            if (indegree[y] == 0) enqueue(&zeroin, y);
        }
    }

    if (j != g->nvertices)
        printf("Not a DAG -- only %d vertices found\n",j);
}
```
Degrees Summary

- number of edges connected to a vertex
- for undirected graphs
 - sum of all degrees = 2 X edges
 - the number of nodes with odd numbered degrees is even?
- for directed graph
 - sum of in-degree = sum of out-degree
Conectivity

- connected
 - there exists a path between every pair of vertices

- articulation vertex
 - deleting this vertex makes the graph disconnected
 - if a graph does not have any such vertex is biconnected
 - deleting a bridge edge makes the graph disconnected
Cycles

- A tree does not have a cycle
- Eulerian cycle
 - a tour that visits every edge exactly once
- Hamiltonian cycle (path)
 - a tour that visits every vertex exactly once
Given a graph $G = (V, E)$ and tree $T = (V, E')$
- $E' \subseteq E$
- for all (u, v) in E' u, v $\in V$
- for all connected graph, there exists a spanning tree

A spanning tree can be constructed using DFS or BFS
Minimal Spanning Tree

- sum of edge weights is minimal
- if there is no weight
 - number of edges is minimal
- why is it so important?
 - search space is minimal for most problems
Example of MST: Prim’s Algorithm
1. Vertex D has been chosen as a starting point
 ① Vertices A, B, E, F are connected to D through a **single edge**.
 ② A is **the nearest** to D and thus chosen as the 2nd vertex along with the edge AD
2. The next vertex chosen is the vertex nearest to either D or A. So the vertex F is chosen along with the edge DF
3. same as 2, Vertex B is chosen.
among C, E, G, E is chosen.
among C, G, C is chosen.
6. G is the only remaining vertex. E is chosen.
The finally obtained **minimum spanning tree**
⇒ the total weight is 39
dist: array of distances from the source to each vertex
edges: array indicating, for a given vertex, which vertex in the tree it is closest to
i: loop index
F: list of finished vertices
U: list or heap of unfinished vertices
/* initialization */
for i=1 to |V|
 dist[i] = INFINITY
 edges[i] = NULL
end for
pick a vertex s to be the seed for the MST
dist[s] = 0
while(F is missing a vertex)
 pick the vertex v in U with the shortest edge and add v to F
 for each edge of v, (v1, v2)
 if (length(v1, v2) < dist[v2])
 dist[v2] = length(v1, v2)
 edges[v2] = v1
 possibly update U, depending on implementation
 end if
 end for
end while
Dijkstra’s Algorithm

- Goal: Find the shortest path from s to t
All Pairs Shortest Paths

- Use Dijkstra’s method for all the vertices
 - complexity?

- Floyd’s method
 - Given the adjacency matrix with vertices numbered (1..n)

\[W[i, j]^k = \min(W[i, j]^{k-1}, W[i, k]^{k-1} + W[k, j]^{k-1}) \]
Network Flow (Today’s Problem)

- Think edges as pipes
- What’s the maximum flow from node 1 to node 5?