
Graph Algorithm

Topological Sort

 Definition

 A topological sort of a DAG G is a linear ordering of all its
vertices such that if G contains a link (u,v), then node u
appears before node v in the ordering

b

c a

d

b

c a

d

1

2 3

4

Algorithm Example

 find source nodes (indegree = 0)

 if there is no such node, the graph is NOT DAG

c

a

b

e

d

f

in_deg=1

in_deg=0

in_deg=2

in_deg=1

in_deg=3

in_deg=1 Queue

Sorted: -

c

 span c; decrement in_deg of a, b, e

 store a in Queue since in_deg becomes 0

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=1

in_deg=1

in_deg=2

in_deg=1 Queue

Sorted: c

c

a

 span a; decrement in_deg of b, f

 store b, f in Queue since ...

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=2

in_deg=1 Queue

Sorted: c a

a

b

f

 span b; store d in Queue

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=2

in_deg=0 Queue

Sorted: c a b

b

f

d

 span f; decrement in_deg of e
 no node with in_deg = 0 is found

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=1

in_deg=0 Queue

Sorted: c a b f

f

d

 span d; store e in Queue.

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0 Queue

Sorted: c a b f d

d

e

 span e; Queue is empty

c

a

b

e

d

f

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0

in_deg=0 Queue

Sorted: c a b f d e

e

Example Algorithm Summary

 Based on indegree of each vertex
 if it is 0, this node is the first one in the sorted list

 span this node
 move this node from Queue to the sorted list

 find nodes edged from this node

 decrement indegrees of them

 It is so similar to BFS
 can you do it like DFS?

입력차수 ‘0’인 노드에서 시작!

노드 y와 연결된 노드의 입력차수를 하나씩 감소!

입력차수가 ‘0’인 노드가 생성되면 큐에 저장!

큐가 비워질 때 까지 루프내의 동작을 수행!

Degrees Summary

 number of edges connected to a vertex

 for undirected graphs

 sum of all degrees = 2 X edges

 the number of nodes with odd numbered degrees is even?

 for directed graph

 sum of in-degree = sum of out-degree

Conectivity

 connected

 there exists a path between every pair of vertices

 articulation vertex

 deleting this vertex makes the graph disconnected

 if a graph does not have any such vertex is biconnected

 deleting a bridge edge makes the graph disconnected

Cycles

 A tree does not have a cycle

 Eulerian cycle

 a tour that visits every edge exactly once

 Hamiltonian cycle (path)

 a tour that visits every vertex exactly once

 Given a graph G = (V, E) and tree T = (V, E)
 E E

 for all (u, v) in E u, v V

 for all connected graph, there exists a spanning tree

 A spanning tree can be constructed using DFS or BFS

s

2

5

4

7

8

3 6 9

s

2

5

4

7

8

3 6 9

0

1

1

1

2

2

3

3

3

Spanning Tree

Minimal Spanning Tree

 sum of edge weights is minimal

 if there is no weight

 number of edges is minimal

 why is it so important?

 search space is minimal for most problems

Example of MST: Prim’s Algorithm

1. Vertex D has been chosen as a starting point
① Vertices A, B, E, F are connected to D through a single edge.
② A is the nearest to D and thus chosen as the 2nd vertex along with the

edge AD

2. The next vertex chosen is the vertex nearest to either D or A. So the
vertex F is chosen along with the edge DF

3. same as 2, Vertex B is chosen.

4. among C, E, G, E is chosen.

5. among C, G, C is chosen.

6. G is the only remaining vertex. E is chosen.

7. The finally obtained minimum spanning tree

 the total weight is 39

dist: array of distances from the source to each vertex
edges: array indicating, for a given vertex, which vertex in the tree it is closest to
i: loop index
F: list of finished vertices
U: list or heap of unfinished vertices

/* initialization */

for i=1 to |V|

dist[i] = INFINITY

edges[i] = NULL

end for

pick a vertex s to be the seed for the MST

dist[s] = 0

while(F is missing a vertex)

pick the vertex v in U with the shortest edge and add v to F

for each edge of v, (v1, v2)

if (length(v1, v2) < dist[v2])

dist[v2] = length(v1, v2)

edges[v2] = v1

possibly update U, depending on implementation

end if

end for

end while

/* this loop looks through every neighbor of v and checks to see

if that neighbor could reach the MST more cheaply through v

than by linking a previous vertex

Dijkstra’s Algorithm

 Goal: Find the shortest path from s to t

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

All Pairs Shortest Paths

 Use Dijkstra’s method for all the vertices

 complexity?

 Floyd’s method

 Given the adjacency matrix with vertices numbered (1..n)

Network Flow (Today’s Problem)

 Think edges as pipes

 what’s the maximum
flow from node 1 to
node 5?

