Representing and Manipulating Integers

Part II

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (Char data type)
 - ~0x41 --> 0xBE
 ~0x01000001 --> 10111110
 - ~0x00 --> 0xFF
 ~0x00000000 --> 11111111
 - 0x69 & 0x55 --> 0x41
 01101001 & 01010101 --> 01000001
 - 0x69 | 0x55 --> 0x7D
 01101001 | 01010101 --> 01111101
 - 0x69 ^ 0x55 --> 0x4C
 01101001 ^ 01010101 --> 00111100
Logic Operations in C

- Contrast to logical operators
 - `&&`, `||`, `!`
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - `!0x41` → `0x00`
 - `!0x00` → `0x01`
 - `!!0x41` → `0x01`
 - `0x69 && 0x55` → `0x01`
 - `0x69 || 0x55` → `0x01`
 - `if (p && *p)` (avoids null pointer access)
Shift Operations

- **Left shift:** \(x \ll y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right shift:** \(x \gg y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate MSB on right
 - Useful with two’s complement integer representation

- **Undefined if** \(y < 0 \) **or** \(y \geq \) word size
Addition (1)

- **Integer addition example**
 - 4-bit integers u, v
 - Compute true sum
 - True sum requires one more bit ("carry")
 - Values increase linearly with u and v
 - Forms planar surface
Addition (2)

- **Unsigned addition**
 - Ignores carry output
 - Wraps around
 - If true sum $\geq 2^w$
 - At most once

True Sum

2^{w+1}

Overflow

2^w

0

Unsigned addition
Addition (3)

- **Signed addition**
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

\[+2^w \]

- **True Sum**

- Positive overflow

- Negative overflow

- Signed addition

\[+2^{w-1} \]

\[0 \]

\[-2^{w-1} \]

\[-2^w \]

Two’s complement addition (4-bit word)

Positive overflow

Negative overflow
Addition (4)

- **Signed addition in C**
 - Ignores carry output
 - The low-order \(w \) bits are identical to unsigned addition

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>x + y</th>
<th>Truncated x + y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>3 [011]</td>
<td>7 [0111]</td>
<td>7 [111]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>6 [0110]</td>
<td>-2 [110]</td>
</tr>
</tbody>
</table>

Examples for \(w = 3 \)
Multiplication (1)

- **Ranges of \((x \times y)\)**
 - Unsigned: up to \(2^w\) bits
 \[
 0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1
 \]
 - Two’s complement min: up to \(2^{w-1}\) bits
 \[
 x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}
 \]
 - Two’s complement max: up to \(2^w\) bits (only for TMin\(^2\))
 \[
 x \times y \leq (-2^{w-1})^2 = 2^{2w-2}
 \]

- **Maintaining exact results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Multiplication (2)

- **Unsigned multiplication in C**
 - Ignores high order \(w \) bits
 - Implements modular arithmetic

\[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]

Diagram

Operands: \(w \) bits

True Product: \(2^w \) bits \(u \cdot v \)

Discard \(w \) bits: \(w \) bits

\[\text{UMult}_w(u, v) \]
Signed multiplication in C

- Ignores high order \(w \) bits
- The low-order \(w \) bits are identical to unsigned multiplication

Examples for \(w = 3 \)

<table>
<thead>
<tr>
<th>Mode</th>
<th>(x)</th>
<th>(y)</th>
<th>(x \cdot y)</th>
<th>Truncated (x \cdot y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>5 [101]</td>
<td>3 [011]</td>
<td>15 [001111]</td>
<td>7 [111]</td>
</tr>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>7 [111]</td>
<td>28 [011100]</td>
<td>4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4 [100]</td>
<td>-1 [111]</td>
<td>4 [000100]</td>
<td>-4 [100]</td>
</tr>
<tr>
<td>Unsigned</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
</tbody>
</table>
Multiplication (4)

- **Power-of-2 multiply with shift**
 - $u << k$ gives $u \cdot 2^k$
 - e.g., $u << 3 == u \cdot 8$
 - Both signed and unsigned
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>u</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \cdot 2^k$</td>
<td>$0 \cdots 010 \cdots 00$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Product: $w+k$ bits</th>
<th>$u \cdot 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$UMult_w(u, 2^k)$</td>
<td>$\cdots 0 \cdots 00$</td>
</tr>
<tr>
<td>$TMult_w(u, 2^k)$</td>
<td>$\cdots 0 \cdots 00$</td>
</tr>
</tbody>
</table>
Compiled multiplication code

- C compiler automatically generates shift/add code when multiplying by constant

C Function

```c
int mul12 (int x)
{
    return x * 12;
}
```

Compiled Arithmetic Operations

- `leal (%eax, %eax, 2), %eax` ; \(t \leftarrow x + x \times 2 \)
- `sall $2, %eax` ; return \(t \ll 2 \)
Divison (1)

- **Unsigned power-of-2 divide with shift**
 - $u \gg k$ gives $\lfloor u / 2^k \rfloor$
 - Uses logical shift

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$x \gg 1$</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>$x \gg 4$</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>$x \gg 8$</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Division (2)

- Compiled unsigned division code
 - Uses logical shift for unsigned
 - Logical shift written as >>> in Java

C Function

```c
unsigned udiv8 (unsigned x) {
    return x / 8;
}
```

Compiled Arithmetic Operations

```asm
shrl $3, %eax ; return t >> 3
```
Division (3)

- Signed power-of-2 divide with shift
 - \(x \gg k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift (rounds wrong direction if \(x < 0 \))

Operands:

\[
\begin{array}{c}
 x \\
 / 2^k \\
/ 2^k \\
\end{array}
\]

Division:

\[
\begin{array}{c}
x / 2^k \\
\end{array}
\]

Result:

\[
\text{RoundDown}(x / 2^k)
\]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y \gg 1)</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y \gg 4)</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(y \gg 8)</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Division (4)

- **Correct power-of-2 divide**
 - Want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (Round Toward 0) when $x < 0$
 - Compute as $\left\lfloor \frac{(x + 2^k-1)}{2^k} \right\rfloor$
 - In C: $(x + (1 << k) - 1) >> k$
 - Biases dividend toward 0

- **Case 1: No rounding**
 - Biasing has no effect

<table>
<thead>
<tr>
<th>Dividend: x</th>
<th>$+2^k-1$</th>
<th>2^k</th>
<th>$\left\lfloor \frac{x}{2^k} \right\rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 ... 0 ... 0 0$</td>
<td>$0 ... 0 0 1 ... 1 1$</td>
<td>$0 ... 0 1 0 ... 0 0$</td>
<td>$1 ... 1 1 ... 1 1$</td>
</tr>
</tbody>
</table>

Binary Point
Division (5)

- **Case 2: Rounding**
 - Biasing adds 1 to final result

![Division Diagram](image)

- **Dividend:**
 - $x + 2^k - 1$
 - Incremented by 1

- **Divisor:**
 - 2^k
 - Incremented by 1

- **Binary Point**
Division (6)

- Compiled signed division code
 - Uses arithmetic shift for signed
 - Arithmetic shift written as >> in Java

```
C Function

int idiv8 (int x)
{
    return x / 8;
}

Explanation

if (x < 0)
    x += 7;
return x >> 3;
```