

Concurrent Programming

Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

2 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Echo Server Revisited

int main (int argc , char * argv []) {
 ...
 listenfd = socket (AF_INET, SOCK_STREAM, 0);

 bzero ((char *)& saddr , sizeof (saddr));
 saddr.sin_family = AF_INET;
 saddr.sin_addr.s_addr = htonl (INADDR_ANY);
 saddr.sin_port = htons (port);
 bind (listenfd , (struct sockaddr *)& saddr , sizeof (saddr));

 listen (listenfd , 5);
 while (1) {
 connfd = accept (listenfd , (struct sockaddr *)& caddr , & clen);
 while ((n = read (connfd , buf , MAXLINE)) > 0) {
 printf ƽƧÇÏÔ ˧Ä ÂÙÔÅÓ ÆÒÏÍ ÃÌÉÅÎÔƚ\ ÎƨƗ ÎƾƘ
 write (connfd , buf , n);
 }
 close (connfd);
 }
}

3 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Iterative Servers (1)

ÁOne request at a time

client 1 server client 2

call connect call accept

ret connect

ret accept

call connect

call read
write

ret read
close

close
call accept

ret connect

call read

ret read

close

write

ret accept

close

4 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Iterative Servers (2)

ÁFundamental flaw

ÁSolution: use concurrent servers instead
ÅUse multiple concurrent flows to serve multiple clients at the

same time.

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

Server blocks
waiting for
data from
Client 1

5 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Creating Concurrent Flows

ÁProcesses

ÅKernel automatically interleaves multiple logical flows.

ÅEach flow has its own private address space.

ÁThreads

ÅKernel automatically interleaves multiple logical flows.

ÅEach flow shares the same address space.

ÅHybrid of processes and I/O multiplexing

ÁI/O multiplexing with select()

ÅUser manually interleaves multiple logical flows

ÅEach flow shares the same address space

ÅPopular for high -performance server designs.

Concurrent Programming

Process-based

7 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Process-based Servers

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call fgets
fork child 1

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept

ret connect

ret accept call fgets

write fork

call
read

child 2

write

call read

end read

close
close

...

call connect

8 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Echo Server

int main (int argc , char * argv [])
{
 . . .

 while (1) {
 connfd = accept (listenfd , (struct sockaddr *)& caddr ,
 &caddrlen));

 while ((n = read(connfd , buf , MAXLINE)) > 0) {
 printf ƽƧÇÏÔ ˧Ä ÂÙÔÅÓ ÆÒÏÍ ÃÌÉÅÎÔƚ\ ÎƨƗ ÎƾƘ
 write(connfd , buf , n);
 }

 close(connfd);
 }
}

ÁIterative version

9 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Echo Server: Process-based
int main (int argc , char * argv [])
{
 . . .
 signal (SIGCHLD, handler);

 while (1) {
 connfd = accept (listenfd , (struct sockaddr *)& caddr ,
 &caddrlen));
 if (fork() == 0) {
 close(listenfd);
 while ((n = read(connfd , buf , MAXLINE)) > 0) {
 printf ƽƧÇÏÔ ˧Ä ÂÙÔÅÓ ÆÒÏÍ ÃÌÉÅÎÔƚ\ ÎƨƗ ÎƾƘ
 write(connfd , buf , n);
 }
 close(connfd);
 exit(0);
 }
 close(connfd);
 }
}

void handler(int sig) {
 pid_t pid;
 int stat;
 while ((pid = waitpid(- 1, &stat,
 WNOHANG)) > 0);
 return;
}

10 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Implementation Issues

ÁServers should restart accept() if it is
interrupted by a transfer of control to the
SIGCHLD handler

ÅNot necessary for systems with POSIX signal handling.

ÅRequired for portability on some older Unix systems.

ÁServer must reap zombie children

Åto avoid fatal memory leak

ÁServer must close its copy of connfd .

ÅKernel keeps reference for each socket.

ÅAfter fork(), refcnt (connfd) = 2

ÅConnection will not be closed until refcnt (connfd) = 0

11 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Process-based Designs

ÁPros
ÅHandles multiple connections concurrently.

ÅClean sharing model.
ŕDescriptors (no), file tables (yes), global variables (no)

ÅSimple and straightforward.

ÁCons
ÅAdditional overhead for process control.
ŕProcess creation and termination

ŕProcess switching

ÅNontrivial to share data between processes.
ŕRequires IPC (InterProcess Communication) mechanisms:

 FIFOŚs, System V shared memory and semaphores

Concurrent Programming

Thread-based

13 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Traditional View

ÁProcess = process context + address space

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

14 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Alternate View

ÁProcess = thread context + kernel context +
address space

shared libraries

run-time heap

0

read/write data Thread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code and Data

read-only code/data

stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

15 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

A Process with Multiple Threads

ÁMultiple threads can be associated with a process.
ÅEach thread has its own logical control flow (sequence of PC

values)

ÅEach thread shares the same code, data, and kernel context

ÅEach thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write data
Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

 Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

16 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Logical View of Threads

ÁThreads associated with a process form a
pool of peers

ÅUnlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

T1

Process hierarchy Threads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

17 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Threads vs. Processes

ÁHow threads and processes are similar

ÅEach has its own logical control flow.

ÅEach can run concurrently.

ÅEach is context switched.

ÁHow threads and processes are different

ÅThreads share code and data, processes (typically) do
not.

ÅThreads are somewhat less expensive than processes.
ŕLinux 2.4 Kernel, 512MB RAM, 2 CPUs

 -> 1,811 forks()/second

 -> 227,611 threads/second (125x faster)

18 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Pthreads Interface

ÁPOSIX Threads Interface
ÅCreating and reaping threads

ðpthread_create()

ðpthread_join()

ÅDetermining your thread ID
ðpthread_self()

ÅTerminating threads
ðpthread_cancel()

ðpthread_exit()

ðexit (terminates all threads), return (terminates current thread)

ÅSynchronizing access to shared variables
ðpthread_mutex_init()

ðpthread_mutex_[un]lock()

ðpthread_cond_init()

ðpthread_cond_[timed]wait()

ðpthread_cond_signal(), etc.

19 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

“hello, world” Program (1)

/*
 * hello.c - Pthreads "hello, world" program
 */
ʢÉÎÃÌÕÄÅ ƧÐÔÈÒÅÁÄƚÈʏ

void *thread(void *vargp);

int main() {
 pthread_t tid;

 pthread_create(&tid, NULL, thread, NULL);
 pthread_join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world! \ n");
 return NULL;
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

20 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

“hello, world” Program (2)

ÁExecution of threaded “hello, world”
main thread

peer thread

return NULL; main thread waits for
peer thread to terminate

exit()

terminates
main thread and
any peer threads

call pthread_create ()

call Pthread_join ()

pthread_join () returns

printf ()

(peer thread
terminates)

pthread_create () returns

21 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Echo Server: Thread-based

int main (int argc, char *argv[])
{
 int *connfdp;
 pthread_t tid;
 . . .

 while (1) {
 connfdp = (int *)
 malloc(sizeof(int));
 *connfdp = accept (listenfd,
 (struct sockaddr *)&caddr,
 &caddrlen));

 pthread_create(&tid, NULL,
 thread_main, connfdp);
 }
}

void *thread_main(void *arg)
{
 int n;
 char buf[MAXLINE];

 int connfd = *((int *)arg);
 pthread_detach(pthread_self());
 free(arg);

 while((n = read(connfd, buf,
 MAXLINE)) > 0)
 write(connfd, buf, n);

 close(connfd);
 return NULL;
}

22 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Implementation Issues (1)

ÁMust run “detached” to avoid memory leak.
ÅAt any point in time, a thread is either joinable or

detached.

ÅJoinable thread can be reaped and killed by other
threads
ŕMust be reaped (with pthread_join ()) to free memory

resources.

ÅDetached thread cannot be reaped or killed by other
threads.
ŕResources are automatically reaped on termination.

ŕExit state and return value are not saved.

ÅDefault state is joinable.
ŕUse pthread_detach(pthread_self()) to make detached.

23 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Implementation Issues (2)

ÁMust be careful to avoid unintended sharing
ÅFor example, what happens if we pass the address

connfd to the thread routine?

ÁAll functions called by a thread must be
thread-safe.
ÅA function is said to be thread-safe or reentrant ,

when the function may be called by more than one
thread at a time without requiring any other action
on the callerŚs part.

 int connfd;
 . . .
 pthread_create(&tid, NULL, thread_main, &connfd);
 . . .

24 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Thread-based Designs

ÁPros

ÅEasy to share data structures between threads.
ŕe.g., logging information, file cache, etc.

ÅThreads are more efficient than processes.

ÁCons

ÅUnintentional sharing can introduce subtle and hard -
to-reproduce errors!
ŕThe ease with which data can be shared is both the greatest

strength and the greatest weakness of threads.

