Concurrent Programming

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu

S

UNIVERSITY

Echo Server Revisited

int main (int argc, char* argvl(]){
listenfd = socket (AF_INET, SOCK_STREAM, 0);

bzero ((char *)& saddr, sizeof (saddr));

saddr.sin_family = AF_INET;

saddr.sin_addr.s_addr = htonl (INADDR_ANY);

saddr.sin_port = htons (port);

bind (listenfd , (struct sockaddr *)& saddr, sizeof (saddr));

listen (listenfd ,5);

while (1) {
connfd = accept (listenfd , (struct sockaddr *)& caddr, & clen);
while ((n = read (connfd , buf, MAXLINE)) > 0) {

printftt 52CI O 1A AUOAO \VEQItI TAIKEAT Ot
write (connfd , buf, n);

}

close (connfd);

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

A One request at a time

client 1

—————————————————————————

—————————————————————————

call read

ret read

server

call accept

ret accept

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

client 2

‘call connect

Itera

A Fundamental flaw

client 1

—————————————————————————

. call connect

ret connect

call fgets

User goes
out to lunck

Client 1blocks

waiting for usej

to type in data v v
A Solution: use concurrent servers instead

Serverblocks
waiting for
data from
Client 1

server

Servers (2)

call accept

ret accept

client 2

call connect

Client 2blocks
waiting to complete
Its connection
request until after
lunch!

A Use multiple concurrent flows to serve multiple clients at the
same time.

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

Creating Concurrent Flows ¢

A Processes
A Kernel automatically interleaves multiple logical flows.
A Each flow has its own private address space.

A Threads
A Kernel automatically interleaves multiple logical flows.
A Each flow shares the same address space.
A Hybrid of processes and 1/0 multiplexing

A 1/0 multiplexing with select()
A User manually interleaves multiple logical flows
A Each flow shares the same address space
A Popular for high -performance server designs.

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

Concurrent Programming

Process-based

sk

UNIVERSITY

ased Servers

server client 2
. ! caII accept e ‘call connect
call connect [———————————— .| S v :caII connect
L _r_e_ t, _C_O_ []_r_]_e_ _C_t ______ T 4 ___________ 4
....................... NF [e_t_g(_;_c_@ptn_n_““
call fgets h.w/ fork
cnli
call read callaccept | 5
= goes Pl L TET CONNECT
J--'. """"" T
out to '“” retaccept i call fgets
fork : write
: child 2
Client 1 —~ndes
caII read 5
waiting for .. read g ’
in data close endread i
v !] close

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

A Iterative version

int main (int argc, char* argv(])
{
while (1) {
connfd =accept (listenfd ,(struct
&caddrlen));
while ((n = read(connfd , buf, MAXLINE)) > 0) {
printt 52CIi O 1A AUOAO \VEQItI
write(connfd , buf, n);
}
close(connfd);
}
}

sockaddr *)& caddr,

1AIKEAT Of

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

i

!

Echo*ﬁ

rver:

Process-based

int main (int argc, char* argvl])
{
signal (SIGCHLD, handler);
while (1) {
connfd =accept (listenfd ,(struct sockaddr *)& caddr,
&caddrlen));
if (fork() == 0) {
close(listenfd);
while ((n = read(connfd , buf, MAXLINE)) > 0) {
printftt 52CI O 1A AUOAO \VEQItI TAIKEAT Of
write(connfd , buf, n);
}
close(connfd); void handler(int sig) {
exit(0); pid_t pid;
} int stat;
close(connfd); while ((pid = waitpid(-1, &stat,
} WNOHANG)) > 0);
} return;

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

——
i __

Imple;?entation Issues

A Servers should restart accept() if it is
interrupted by a transfer of control to the
SIGCHLDhandler

A Not necessary for systems with POSIX signal handling.
A Required for portability on some older Unix systems.
A Server must reap zombie children
A to avoid fatal memory leak
A Server must close its copy of connfd.

A Kernel keeps reference for each socket.
A After fork(), refcnt (connfd) =2
A Connection will not be closed until refcnt (connfd) =0

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

ased Designs

Proce

A Pros

A Handles multiple connections concurrently.
A Clean sharing model.

f Descriptors (no), file tables (yes), global variables (no)
A Simple and straightforward.

A Cons

A Additional overhead for process control.
f Process creation and termination
f Process switching
A Nontrivial to share data between processes.

f Requires IPC (InterProcess Communication) mechanisms:
FI FOSs, System V shared memory

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

Concurrent Programming

Thread-based

sk

UNIVERSITY

e

A Process = process context + address space

Process context Code, data, and stack
Program context: Sp—, stack

Data registers

Condition codes shared libraries

Stack pointer (SP) brk

Program counter (PC)) run-time heap
Kernel context: read/write data

VM structures PC— read-only code/data

Descriptor table

brk pointer 0

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

AIten%e View

A Process = thread context + kernel context +
address space

Thread (main thread) Code and Data

shared libraries

brk

run-time heap
read/write data
PC— read-only code/data

Thread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC

N’

Kernel context:

VM structures
Descriptor table
brk pointer

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

A Process with Multiple Thr

A Multiple threads can be associated with a process.

A Each thread has its own logical control flow (sequence of PC
values)
A Each thread shares the same code, data, and kernel context
A Each thread has its own thread id (TID)
Thread 1 (main thread) Shared code and data Thread 2 (peer thread)
shared libraries

stack 1 : stack 2
run-time heap
Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes 0 Condition codes
SP1 Kernel context: SP2
PC1 VM structures PC2
Descriptor table
brk pointer

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

A Threads associated with a process form a
pool of peers
A Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

4
:
: o
H
- ."
V. y

""" « | shared code, dat
and kernel contex

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

Th rea§vs. Processes

-—

e ——

A How threads and processes are similar
A Each has its own logical control flow.
A Each can run concurrently.
A Each is context switched.

A How threads and processes are different

A Threads share code and data, processes (typically) do
not.

A Threads are somewhat less expensive than processes.
f Linux 2.4 Kernel, 512MB RAM, 2 CPUs
-> 1,811 forks()/second
-> 227,611 threads/second (125x faster)

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

——
B——

Pthreads Ii

A POSIX Threads Interface

A Creating and reaping threads
0 pthread_create()
0 pthread_join()

A Determining your thread ID
0 pthread_self()

A Terminating threads

0 pthread_cancel()

0 pthread_exit()

0 exit (terminates all threads), return (terminates current thread)
A Synchronizing access to shared variables

0 pthread mutex_init()

0 pthread mutex_[un]lock()

0 pthread_cond_init()

d pthread_cond_[timed]wait()

0 pthread cond_signal(), etc.

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

|

i

|

i

"hello, world” Program (1) < ”

/*

* hello.c - Pthreads "hello, world" program

*/ .
CET Al OAA 2DOEOAAAYt Ev Thread attributes

(usually NULL)

void *thread(void *vargp);

Thread arguments
(void *p)

int main() {
pthread_t tid;

NI

e
pthread_create(&tid, NULL, thread, NULL);

pthread_join(tid, NULL);

} return value

(void **p)

[* thread routine */

void *thread(void *vargp) {
printf("Hello, world! \ n");
return NULL;

}

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

A Execution of threaded “hello, world”

main thread

call pthread_create ()
pthread create () returns

call Pthread_join ()

main thread waits for
peer thread to terminate

L/

pthread join () returnsj |

exit()
terminates ¥

main thread and

any peer threads

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

printf ()
return NULL;
(peer thread
terminates)

Echo

: Thread-based

int main (int argc, char *argv[]) void *thread_main(void *arg)
{ {
int *connfdp; int n;
pthread t tid; char buf[MAXLINE];
int connfd = *((int *)arg);
while (1) { pthread_detach(pthread_self());
connfdp = (int *) free(arg);
malloc(sizeof(int));
*connfdp = accept (listenfd, while((n = read(connfd, buf,
(struct sockaddr *)&caddr, MAXLINE)) > 0)
&caddrlen)); write(connfd, buf, n);
pthread_create(&tid, NULL, close(connfd);
thread_main, connfdp); return NULL;
} }

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

Impleintatlon Issues (1)

A Must run "detached" to avoid memory Ieak

A At any point in time, a thread is either joinable or
detached.

A Joinable thread can be reaped and killed by other
threads

f Must be reaped (with pthread_join ()) to free memory
resources.

A Detached thread cannot be reaped or killed by other
threads.
I Resources are automatically reaped on termination.
 Exit state and return value are not saved.
A Default state is joinable.
f Use pthread_detach(pthread_self()) to make detached.

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

——
i __

Impleéentation Issues (2)

A Must be careful to avoid unintended sharing

A For example, what happens if we pass the address
connfd to the thread routine?

int connfd;

pthread_create(&tid, NULL, thread_main, &connfd);

A All functions called by a thread must be
thread-safe.

A A function is said to be thread-safe or reentrant,
when the function may be called by more than one
thread at a time without requiring any other action
on the callerSs part

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

A Pros
A Easy to share data structures between threads.
f e.g., logging information, file cache, etc.
A Threads are more efficient than processes.

A Cons

A Unintentional sharing can introduce subtle and hard -
to-reproduce errors!

f The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads.

SSE2030: Introduction to Computer Systems | Fall 2011 | Jin-Soo Kim (jinsookim@skku.edu)

