Representing and Manipulating Integers
Part I

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Introduction

- The advent of the digital age
 - Analog vs. digital?

- Compact Disc (CD)
 - 44.1 KHz, 16-bit, 2-channel

- MP3
 - A digital audio encoding with lossy data compression
Representing Information

- **Information = Bits + Context**
 - Computers manipulate representations of things.
 - Things are represented as binary digits.
 - What can you represent with N bits?
 - \(2^N\) things
 - Numbers, characters, pixels, positions, source code, executable files, machine instructions, ...
 - Depends on what operations you do on them.

<table>
<thead>
<tr>
<th>(char)</th>
<th>01110011 01101011 01101011 01110101 01110011 01100101 01101101 01101001</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘s’</td>
<td>‘k’</td>
</tr>
<tr>
<td>(int)</td>
<td>1969974131</td>
</tr>
<tr>
<td>(double)</td>
<td>7.03168990329170808178... (\times 10^{199})</td>
</tr>
</tbody>
</table>
Binary Representations

- Why not base 10 representation?
 - Easy to store with bistable elements
 - Straightforward implementation of arithmetic functions
 - Reliably transmitted on noisy and inaccurate wires

- Electronic implementation

![Electronic Implementation Diagram]

- Voltages:
 - 0.0V
 - 0.5V
 - 2.8V
 - 3.3V
Encoding Byte Values

- **Byte = 8 bits**
 - Binary: 00000000_2 to 11111111_2
 - Octal: 000_8 to 377_8
 - An integer constant that begins with 0 is an octal number in C
 - Decimal: 0_{10} to 255_{10}
 - First digit must not be 0 in C
 - Hexadecimal: 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B$_{16}$ in C as $0xFA1D37B$
 or $0xFA1D37B$
Boolean Algebra (1)

- **Developed by George Boole in 1849**
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

- **And**
 - $A \& B = 1$ when both $A=1$ and $B=1$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Not**
 - $\sim A = 1$ when $A=0$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Or**
 - $A \mid B = 1$ when either $A=1$ or $B=1$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Exclusive-Or (Xor)**
 - $A \wedge B = 1$ when either $A=1$ or $B=1$, but not both

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Boolean Algebra (2)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

X
Y

Constant 0
X & Y ; AND
~ (X → Y)
X
~ (Y → X)
Y
X ^ Y ; XOR
X | Y ; OR
~ (X | Y) ; NOR
~ (X ^ Y) ; X-NOR

X

Basic operations: AND(&), OR(|), NOT(~)

X ^ Y = (X & ~Y) | (~X & Y)
X→Y = ~X | Y

A complete set: NAND = ~ (X & Y)

~ X

~ X

~ X

~ X

~ X

~ X

Constant 1

~ (X & Y) ; NAND

~ (X | Y)
Unsigned Integers

- Encoding unsigned integers

\[B = [b_{w-1}, b_{w-2}, \ldots, b_0] \]

\[D(B) = \sum_{i=0}^{w-1} b_i \cdot 2^i \]

\[x = 0000\ 0111\ 1101\ 0011_2 \]

\[D(x) = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^1 + 2^0 \]

\[= 1024 + 512 + 256 + 128 + 64 + 16 + 2 + 1 \]

\[= 2003 \]

- What is the range for unsigned values with \(w \) bits?
Signed Integers (1)

- **Encoding positive numbers**
 - Same as unsigned numbers

- **Encoding negative numbers**
 - Sign-magnitude representation
 - Ones’ complement representation
 - Two’s complement representation
Signed Integers (2)

- Sign-magnitude representation

\[S(B) = (-1)^{b_{w-1}} \left(\sum_{i=0}^{w-2} b_i \cdot 2^i \right) \]

- Two zeros
 - [000...00], [100...00]
- Used for floating-point numbers
Signed Integers (3)

- Ones’ complement representation

\[O(B) = -b_{w-1}(2^{w-1} - 1) + \left(\sum_{i=0}^{w-2} b_i \cdot 2^i \right) \]

- Easy to find \(-n\)
- Two zeros
 - [000...00], [111...11]
- No longer used
Signed Integers (4)

- Two’s complement representation

\[O(B) = -b_{w-1} \cdot 2^{w-1} + \left(\sum_{i=0}^{w-2} b_i \cdot 2^i \right) \]

- Unique zero
- Easy for hardware
 - leading 0 ≥ 0
 - leading 1 < 0
- Used by almost all modern machines
Signed Integers (5)

- Two’s complement representation (cont’d)
 - Following holds for two’s complement

\[
\sim x + 1 = -x
\]

- Complement
 - Observation: \(\sim x + x = 1111...11_2 = -1\)

- Increment
 \[
 \sim x + x = -1 \\
 \sim x + x + (-x + 1) = -1 + (-x + 1) \\
 \sim x + 1 = -x
 \]
Numeric Ranges (1)

Unsigned values
- $\text{UMin} = 0$
 - $\text{UMax} = 2^w - 1$

Two’s complement values
- $\text{TMin} = -2^{w-1}$
- $\text{TMax} = 2^{w-1} - 1$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Numeric Ranges (2)

- Values for different word sizes

<table>
<thead>
<tr>
<th></th>
<th>w = 8</th>
<th>w = 16</th>
<th>w = 32</th>
<th>w = 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- Observations
 - $|\text{TMin}| = \text{TMax} + 1$ (Asymmetric range)
 - $\text{UMax} = 2 \times \text{TMax} + 1$

- In C programming
 - `#include <limits.h>`
 - `INT_MIN`, `INT_MAX`, `LONG_MIN`, `LONG_MAX`, `UINT_MAX`, ...
 - Values platform-specific
Type Conversion (1)

- Unsigned: \(w \) bits → \(w+k \) bits
 - Zero extension: just fill \(k \) bits with 0’s

```
unsigned short x = 2003;
unsigned ix = (unsigned) x;
```

```plaintext
x: 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1
ix: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1
```
Type Conversion (2)

- **Signed: w bits $\rightarrow w+k$ bits**
 - Given w-bit signed integer x
 - Convert it to $w+k$-bit integer with same value

- **Sign extension**
 - Make k copies of sign bit
Type Conversion (3)

- Sign extension example
 - Converting from smaller to larger integer type
 - C automatically performs sign extension

```c
short int x = 2003;
int ix = (int) x;
short int y = -2003;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2003</td>
<td>07 D3</td>
<td>00000111 11010011</td>
</tr>
<tr>
<td>ix</td>
<td>2003</td>
<td>00 07 D3</td>
<td>00000000 00000000 00000111 11010011</td>
</tr>
<tr>
<td>y</td>
<td>-2003</td>
<td>F8 2D</td>
<td>11111000 00101101</td>
</tr>
<tr>
<td>iy</td>
<td>-2003</td>
<td>FF F8 2D</td>
<td>11111111 11111111 11111000 00101101</td>
</tr>
</tbody>
</table>
```
Type Conversion (4)

- Unsigned & Signed: \( w+k \) bits \( \rightarrow \) \( w \) bits
  - Just truncate it to lower \( w \) bits
  - Equivalent to computing \( x \mod 2^w \)

```plaintext
unsigned int x = 0xcafebabe;
unsigned short ix = (unsigned short) x;
int y = 0x2003beef;
short iy = (short) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>3405691582</td>
<td>CA FE BA BE</td>
<td>11001010 11111110 10111010 10111110</td>
</tr>
<tr>
<td>ix</td>
<td>47806</td>
<td>BA BE</td>
<td>10111010 10111110</td>
</tr>
<tr>
<td>y</td>
<td>537116399</td>
<td>20 03 BE EF</td>
<td>00100000 00000011 10111110 11011111</td>
</tr>
<tr>
<td>iy</td>
<td>-16657</td>
<td>BE EF</td>
<td>10111110 11101111</td>
</tr>
</tbody>
</table>
Type Conversion (5)

- **Unsigned → Signed**
  - The same bit pattern is interpreted as a signed number

\[ U2T_w(x) = \begin{cases} 
  x, & x < 2^{w-1} \\ 
  x - 2^w, & x \geq 2^{w-1} 
\end{cases} \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2003</td>
<td>07 D3 00000111 11010011</td>
</tr>
<tr>
<td>ix</td>
<td>2003</td>
<td>07 D3 00000111 11010011</td>
</tr>
<tr>
<td>y</td>
<td>47806</td>
<td>BA BE 10111010 10111110</td>
</tr>
<tr>
<td>iy</td>
<td>-17730</td>
<td>BA BE 10111010 10111110</td>
</tr>
</tbody>
</table>

Unsigned short \( x \) = 2003;
short \( ix \) = (short) \( x \);
unsigned short \( y \) = 0xbabe;
short \( iy \) = (short) \( y \);
Type Conversion (6)

- Signed → Unsigned
  - Ordering inversion
  - Negative → Big positive

\[ T2U_w(x) = \begin{cases} x + 2^w, & x < 0 \\ x, & x \geq 0 \end{cases} \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2003</td>
<td>07 D3</td>
</tr>
<tr>
<td></td>
<td>00000111 11010011</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td>2003</td>
<td>07 D3</td>
</tr>
<tr>
<td></td>
<td>00000111 11010011</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>-2003</td>
<td>F8 2D</td>
</tr>
<tr>
<td></td>
<td>11111000 00101101</td>
<td></td>
</tr>
<tr>
<td>iy</td>
<td>63533</td>
<td>F8 2D</td>
</tr>
<tr>
<td></td>
<td>11111000 00101101</td>
<td></td>
</tr>
</tbody>
</table>
Type Casting in C (1)

- Constants
  - By default, considered to be signed integers
  - Unsigned if have “U” or “u” as suffix
    - 0U, 12345U, 0x1A2Bu

- Type casting
  - Explicit casting
  - Implicit casting via
    - Assignments
    - Procedure calls

```c
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

```c
int f(unsigned);
tx = ux;
f(ty);
```
## Type Casting in C (2)

### Expression evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to **unsigned**.
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>unsigned</td>
<td>True</td>
</tr>
<tr>
<td>-1 &lt; 0</td>
<td>signed</td>
<td>True</td>
</tr>
<tr>
<td>-1 &lt; 0U</td>
<td>unsigned</td>
<td>?</td>
</tr>
<tr>
<td>-1 &gt; -2</td>
<td>signed</td>
<td>?</td>
</tr>
<tr>
<td>(unsigned) -1 &gt; -2</td>
<td>unsigned</td>
<td>?</td>
</tr>
<tr>
<td>2147483647 &gt; -2147483647-1</td>
<td>signed</td>
<td>?</td>
</tr>
<tr>
<td>2147483647U &gt; -2147483647-1</td>
<td>unsigned</td>
<td>?</td>
</tr>
<tr>
<td>2147483647 &gt; (int) 2147483648U</td>
<td>signed</td>
<td>?</td>
</tr>
</tbody>
</table>
Type Casting in C (3)

- Example 1-1

```c
int main ()
{
 unsigned i;
 for (i = 10; i > 0; i--)
 printf ("%u\n", i);
}
```

- Example 1-2

```c
int main ()
{
 unsigned i;
 for (i = 10; i >= 0; i--)
 printf ("%u\n", i);
}
```
Example 2

```c
int sum_array (int a[], unsigned len)
{
 int i;
 int result = 0;

 for (i = 0; i <= len - 1; i++)
 result += a[i];

 return result;
}
```
Type Casting in C (5)

- **Example 3-1**

```c
void copy_mem1 (char *src, char *dest, unsigned len)
{
 unsigned i;
 for (i = 0; i < len; i++)
 *dest++ = *src++;}
```

- **Example 3-2**

```c
void copy_mem2 (char *src, char *dest, unsigned len)
{
 int i;
 for (i = 0; i < len; i++)
 *dest++ = *src++;}
```
Type Casting in C (6)

- **Example 3-3**

```c
void copy_mem3 (char *src, char *dest, unsigned len)
{
 for (; len > 0; len--)
 *dest++ = *src++;
}
```

- **Example 3-4**

```c
void copy_mem4 (char *src, char *dest, unsigned len)
{
 for (; (int) len > 0; len--)
 *dest++ = *src++;
}
```
Type Casting in C (7)

- Example 4

```c
#include <stdio.h>

int main ()
{
 unsigned char c;

 while ((c = getchar()) != EOF)
 putchar (c);
}
```
Type Casting in C (8)

- Lessons
  - There are many tricky situations when you use unsigned integers – hard to debug
  - Do not use just because numbers are nonnegative
  - Use only when you need collections of bits with no numeric interpretation (“flags”)
  - Few languages other than C support unsigned integers