Representing and Manipulating Integers
Part II

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (Char data type)
 - \(~0x41\) → \(0xBE\)
 - \(~01000001_2\) → \(10111110_2\)
 - \(~0x00\) → \(0xFF\)
 - \(~00000000_2\) → \(11111111_2\)
 - \(0x69 \& 0x55\) → \(0x41\)
 - \(01101001_2 \& 01010101_2\) → \(01000001_2\)
 - \(0x69 \mid 0x55\) → \(0x7D\)
 - \(01101001_2 \mid 01010101_2\) → \(01111101_2\)
 - \(0x69 \^ 0x55\) → \(0x4C\)
 - \(01101001_2 \^ 01010101_2\) → \(00111100_2\)
Logic Operations in C

- Contrast to logical operators
 - &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 --> 0x00
 - !0x00 --> 0x01
 - !!0x41 --> 0x01
 - 0x69 && 0x55 --> 0x01
 - 0x69 || 0x55 --> 0x01
 - if (p && *p) (avoids null pointer access)
Shift Operations

- **Left shift:** \(x \ll y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right shift:** \(x \gg y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate MSB on right
 - Useful with two’s complement integer representation

- **Undefined if** \(y < 0 \) or \(y \geq \) word size

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Addition (1)

- Integer addition example
 - 4-bit integers u, v
 - Compute true sum
 - True sum requires one more bit ("carry")
 - Values increase linearly with u and v
 - Forms planar surface
Addition (2)

- **Unsigned addition**
 - Ignores carry output
 - Wraps around
 - If true sum $\geq 2^w$
 - At most once

True Sum

![Diagram showing unsigned addition](image-url)
Addition (3)

- Signed addition
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

Signed addition

$$0 - 2^{w} - 2^{w-1} - 2^{w-1} - 2^{w}$$

Positive overflow

Signed addition

$$+2^{w}$$

True Sum

Positive overflow

$$0$$

$$+2^{w-1}$$

$$+2^{w-1}$$

Negative overflow

Two's complement addition (4-bit word)

Negative overflow

Positive overflow
Addition (4)

- Signed addition in C
 - Ignores carry output
 - The low-order \(w \) bits are identical to unsigned addition

<table>
<thead>
<tr>
<th>Mode</th>
<th>(x)</th>
<th>(y)</th>
<th>(x + y)</th>
<th>Truncated (x + y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>3 [011]</td>
<td>7 [0111]</td>
<td>7 [111]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>6 [0110]</td>
<td>-2 [110]</td>
</tr>
</tbody>
</table>

Examples for \(w = 3 \)
Multiplication (1)

- **Ranges of (x * y)**
 - Unsigned: up to 2^w bits
 $$0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$$
 - Two’s complement min: up to $2^w - 1$ bits
 $$x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$$
 - Two’s complement max: up to 2^w bits (only for TMin2)
 $$x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$$

- **Maintaining exact results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Multiplication (2)

- **Unsigned multiplication in C**
 - Ignores high order w bits
 - Implements modular arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

$UMult_w(u, v)$
Multiplication (3)

- **Signed multiplication in C**
 - Ignores high order \(w \) bits
 - The low-order \(w \) bits are identical to unsigned multiplication

Examples for \(w = 3 \)

<table>
<thead>
<tr>
<th>Mode</th>
<th>(x)</th>
<th>(y)</th>
<th>(x \cdot y)</th>
<th>Truncated (x \cdot y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>7 [111]</td>
<td>28 [011100]</td>
<td>4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4 [100]</td>
<td>-1 [111]</td>
<td>4 [000100]</td>
<td>-4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
</tbody>
</table>
Multiplication (4)

- **Power-of-2 multiply with shift**
 - $u << k$ gives $u \times 2^k$
 - e.g., $u << 3 = u \times 8$
 - Both signed and unsigned
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Operands: w bits

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td>$u \times 2^k$</td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td></td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td></td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td></td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
</tbody>
</table>

True Product: $w+k$ bits

<table>
<thead>
<tr>
<th></th>
<th>$u \times 2^k$</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
</tbody>
</table>

Discard k bits: w bits

<table>
<thead>
<tr>
<th></th>
<th>$u \times 2^k$</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMult$_w(u, 2^k)$</td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td>TMult$_w(u, 2^k)$</td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
</tbody>
</table>
Compiled multiplication code

- C compiler automatically generates shift/add code when multiplying by constant

C Function

```c
int mul12 (int x)
{
    return x * 12;
}
```

Compiled Arithmetic Operations

```
leal (%eax, %eax, 2), %eax ; t ← x + x * 2
sall $2, %eax ; return t << 2
```
Division (1)

- Unsigned power-of-2 divide with shift
 - \(u >> k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

![Division Diagram]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Division (2)

- Compiled unsigned division code
 - Uses logical shift for unsigned
 - Logical shift written as $\gg\gg$ in Java

C Function

```c
unsigned udiv8(unsigned x)
{
    return x / 8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax ; return t $\gg\gg$ 3
```
Division (3)

- **Signed power-of-2 divide with shift**
 - \(x >> k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift (rounds wrong direction if \(x < 0 \))

Operands:
\[
x \quad / \quad 2^k \quad \Rightarrow \quad 0 \quad \cdots \quad 0 \quad 1 \quad 0 \quad \cdots \quad 0 \quad 0
\]

Division:
\[
x / 2^k
\]

Result:
\[
\text{RoundDown}(x / 2^k)
\]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y >> 1</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>y >> 4</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>y >> 8</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Division (4)

Correct power-of-2 divide

- Want \([x / 2^k]\) (Round Toward 0) when \(x < 0\)
- Compute as \([(x + 2^k - 1) / 2^k]\)
 - In C: \((x + (1 << k) - 1) >> k\)
 - Biases dividend toward 0

Case 1: No rounding

- Biasing has no effect

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>x</th>
<th>+2^k−1</th>
<th>1•••00</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1•••</td>
<td>001•••</td>
<td></td>
</tr>
<tr>
<td>/ 2^k</td>
<td>0•••</td>
<td>11•••</td>
<td></td>
</tr>
<tr>
<td>(x / 2^k)</td>
<td>1•••</td>
<td>11•••</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>2^k</th>
<th>0•••010•••00</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>0•••</td>
<td>11•••</td>
</tr>
<tr>
<td>(x / 2^k)</td>
<td>1•••</td>
<td>11•••</td>
</tr>
</tbody>
</table>
Case 2: Rounding

- Biasing adds 1 to final result

Dividend:
\[
x + 2^k - 1
\]

Divisor:
\[
x / 2^k
\]

Result:
\[
x / 2^k + 1
\]
Division (6)

- Compiled signed division code
 - Uses arithmetic shift for signed
 - Arithmetic shift written as $>>$ in Java

Compiled Arithmetic Operations

<table>
<thead>
<tr>
<th></th>
<th>eax, %eax</th>
</tr>
</thead>
<tbody>
<tr>
<td>testl</td>
<td>%eax, %eax</td>
</tr>
<tr>
<td>js</td>
<td>L4</td>
</tr>
<tr>
<td>L3:</td>
<td>sarl $3, %eax</td>
</tr>
<tr>
<td>ret</td>
<td></td>
</tr>
<tr>
<td>L4:</td>
<td>addl $7, %eax</td>
</tr>
<tr>
<td>jmp</td>
<td>L3</td>
</tr>
</tbody>
</table>

C Function

```c
int idiv8 (int x)
{
    return x / 8;
}
```

Explanation

```c
if (x < 0)
    x += 7;
return x $>>$ 3;
```