Introduction to IA-32
IA-32 Processors

- Evolutionary design
 - Starting in 1978 with 8086
 - Added more features as time goes on
 - Still support old features, although obsolete
 - Totally dominate computer market

- Complex Instruction Set Computer (CISC)
 - Many different instructions with many different formats
 - Hard to match performance of Reduced Instruction Set Computers (RISC)
 - But, Intel has done just that!
IA-32 History

- **Evolution with backward compatibility**

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>8086</td>
<td>x86 is born</td>
</tr>
<tr>
<td>1980</td>
<td>8087</td>
<td>x87 is born</td>
</tr>
<tr>
<td>1985</td>
<td>80386</td>
<td>“IA-32”</td>
</tr>
<tr>
<td>1995</td>
<td>Pentium Pro</td>
<td>PAE</td>
</tr>
<tr>
<td>1997</td>
<td>Pentium MMX</td>
<td>MMX</td>
</tr>
<tr>
<td>1999</td>
<td>Pentium III</td>
<td>SSE</td>
</tr>
<tr>
<td>2000</td>
<td>Pentium 4</td>
<td>SSE2</td>
</tr>
<tr>
<td>2004</td>
<td>Pentium 4 Prescott</td>
<td>SSE3, Intel 64</td>
</tr>
<tr>
<td>2005</td>
<td>Pentium 4 662</td>
<td>Intel VT</td>
</tr>
<tr>
<td>2006</td>
<td>Core 2</td>
<td>SSSE3</td>
</tr>
<tr>
<td>2008</td>
<td>Core 2 Penryn</td>
<td>SSE4.1</td>
</tr>
<tr>
<td>2008</td>
<td>Core i7</td>
<td>SSE4.2</td>
</tr>
</tbody>
</table>
Basic Execution Environment

Application Programming Registers

<table>
<thead>
<tr>
<th>General-purpose registers</th>
<th>Segment registers</th>
<th>Control registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAX 31</td>
<td>CS 15</td>
<td>CR0 31</td>
</tr>
<tr>
<td>EBX 30</td>
<td>DS 14</td>
<td>CR1 30</td>
</tr>
<tr>
<td>ECX 29</td>
<td>SS 13</td>
<td>CR2 29</td>
</tr>
<tr>
<td>EDX 28</td>
<td>ES 12</td>
<td>CR3 28</td>
</tr>
<tr>
<td>EBP 27</td>
<td>EDX 11</td>
<td>CR4 27</td>
</tr>
<tr>
<td>ESI 26</td>
<td>EBP 10</td>
<td></td>
</tr>
<tr>
<td>EDI 25</td>
<td>ESI 9</td>
<td></td>
</tr>
<tr>
<td>ESP 24</td>
<td>EDI 8</td>
<td></td>
</tr>
<tr>
<td>EIP 31</td>
<td>SI 7</td>
<td></td>
</tr>
<tr>
<td>Eflags 30</td>
<td>DI 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Table Registers

- GDTR
 - linear base address
 - table limit
- IDTR
 - linear base address
 - table limit

System Segment Registers

- TR
 - seg. selector
- LDTR
 - seg. selector
General-Purpose Registers

- **EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP**
 - Some instructions assume that pointers in certain registers are relative to specific segments.
 - Many instructions assign specific registers to hold operands

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAX</td>
<td>Accumulator for operands and results data</td>
</tr>
<tr>
<td>EBX</td>
<td>Pointer to data in the DS segment</td>
</tr>
<tr>
<td>ECX</td>
<td>Counter for string and loop operations</td>
</tr>
<tr>
<td>EDX</td>
<td>I/O pointer</td>
</tr>
<tr>
<td>ESI</td>
<td>Pointer to data in the segment pointed to by the DS register; Source pointer for string operations</td>
</tr>
<tr>
<td>EDI</td>
<td>Pointer to data in the segment pointed to by the ES register; Destination pointer for string operations</td>
</tr>
<tr>
<td>ESP</td>
<td>Stack pointer (in the SS segment)</td>
</tr>
<tr>
<td>EBP</td>
<td>Pointer to data on the stack (in the SS segment)</td>
</tr>
</tbody>
</table>
EFLAGS Register (1)

- ID Flag (ID)
- Virtual Interrupt Pending (VIP)
- Virtual Interrupt Flag (VIF)
- Alignment Check (AC)
- Virtual-8086 Mode (VM)
- Resume Flag (RF)
- Nested Task (NT)
- I/O Privilege Level (IOPL)
- Overflow Flag (OF)
- Direction Flag (DF)
- Interrupt Enable Flag (IF)
- Trap Flag (TF)
- Sign Flag (SF)
- Zero Flag (ZF)
- Auxiliary Carry Flag (AF)
- Parity Flag (PF)
- Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.
Status flags

CF (Carry): set if an arithmetic operation generates a carry or a borrow; indicates an overflow condition for unsigned-integer arithmetic.

PF (Parity): set if the least-significant byte of the result contains an even number of 1 bits

AF (Adjust): set if an arithmetic operation generates a carry or a borrow out of bit 3 of the result; used in binary-coded decimal (BCD) arithmetic

ZF (Zero): set if the result is zero

SF (Sign): set equal to the most-significant bit of the result

OF (Overflow): set if the integer result is too large a positive number or too small a negative number to fit in the destination operand; indicates an overflow condition for signed-integer arithmetic.

DF (Direction): setting the DF causes the string instructions to auto-decrement; set and cleared by STD/CLD instructions
Instruction Pointer

- **EIP Register**
 - Contains the offset in the current code segment for the next instruction to be executed.
 - Advanced from one instruction boundary to the next in straightline code, or
 - Moved ahead or backwards by instructions such as JMP, Jcc, CALL, RET, and IRET.
 - Cannot be accessed directly by software
 - EIP is controlled implicitly by control transfer instructions, interrupts, and exceptions
 - Because of instruction prefetching, an instruction address read from the bus does not match the value in the EIP register.
Assembly Characteristics (1)

- **Minimal data types**
 - "Integer" data of 1, 2, 4, or 8 bytes
 - Data values
 - Addresses (untyped pointers)
 - Floating point data of 4, 8, or 10 bytes
 - No aggregate types such as arrays or structures
 - Just contiguously allocated bytes in memory
 - (cf.) In IA-32, a "word" means 16-bit data
Assembly Characteristics (2)

- **Primitive operations**
 - Perform an arithmetic/logical function on register or memory data
 - Transfer data between memory and register
 - Load data from memory into register
 - Store register data into memory
 - Transfer control
 - Unconditional jumps
 - Conditional branches
 - Procedure calls and returns
IA-32 Reference

- Intel 64 and IA-32 Architectures Software Developer’s Manual
 - Volume 1: Basic Architecture
 - Volume 2A, 2B: Instruction Set Reference
 - Volume 3A, 3B: System Programming Guide

- Available online: