

File I/O

Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

2 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Unix Files

ÁA Unix file is a sequence of m bytes:

ÅB0, B1, , Bk , , Bm-1

ÁAll I/O devices are represented as files:

Å/dev/sda2 (hard disk partition)

Å/dev/tty2 (terminal)

ÁEven the kernel is represented as a file:

Å/dev/kmem (kernel memory image)

Å/proc (kernel data structures)

3 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Unix File Types

ÁRegular file
ÅBinary or text file

ÅUnix does not know the difference!

ÁDirectory file
ÅA file that contains the names and locations of other files.

ÁCharacter special and block special files
ÅTerminals (character special) and disks (block special)

ÁFIFO (named pipe)
ÅA file type used for interprocess communication

ÁSocket
ÅA file type used for network communication between processes

4 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Unix I/O

ÁCharacteristics

ÅThe elegant mapping of files to devices allows kernel
to export simple interface called Unix I/O.

ÅAll input and output is handled in a consistent and
uniform way (ŗbyte streamŘ)

ÁBasic Unix I/O operations (system calls):

ÅOpening and closing files
ðopen() and close()

ÅChanging the current file position (seek)
ðlseek()

ÅReading and writing a file
ðread() and write()

5 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Opening Files

ÁOpening a file informs the kernel that you are

getting ready to access that file.

ÁReturns a small identifying integer file descriptor
Å fd == -1 indicates that an error occurred

ÁEach process created by a Unix shell begins life with

three open files associated with a terminal:

Å0: standard input

Å1: standard output

Å2: standard error

int fd ; /* file descriptor */
if ((fd ˮ ÏÐÅÎƽƧƳetc ƳÈÏÓÔÓƨƗ /ʍ2$/.,9ƾƾ ˱ ʣƾ ǅ
 perror ƽƧÏÐÅÎƨƾƘ
 exit(1);
}

6 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Closing Files

ÁClosing a file informs the kernel that you are finished
accessing that file.

ÁClosing an already closed file is a recipe for disaster
in threaded programs (more on this later)

ÁMoral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
 ÐÅÒÒÏÒƽƧÃÌÏÓÅƨƾƘ
 exit(1);
}

7 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Reading Files

ÁReading a file copies bytes from the current file

position to memory, and then updates file position.

ÁReturns number of bytes read from file fd into buf

Ånbytes < 0 indicates that an error occurred.

Åshort counts (nbytes < sizeof(buf)) are possible and are not
errors!

char buf [512];
int fd ; /* file descriptor */
int nbytes ; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd , buf , sizeof (buf))) < 0) {
 perror ƽƧÒÅÁÄƨƾƘ
 exit(1);
}

8 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Writing Files

ÁWriting a file copies bytes from memory to the

current file position, and then updates current file

position.

ÁReturns number of bytes written from buf to file fd .
Ånbytes < 0 indicates that an error occurred.

ÅAs with reads, short counts are possible and are not errors!

char buf [512];
int fd ; /* file descriptor */
int nbytes ; /* number of bytes read */
/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd , buf , sizeof (buf)) < 0) {
 perror ƽƧ×ÒÉÔÅƨƾƘ
 exit(1);
}

9 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Unix I/O Example

ÁCopying standard input to standard output
one byte at a time.

int main(void)
{
 char c;

 while(read(0, &c, 1) != 0)
 write(1, &c, 1);
 exit(0);
}

10 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Dealing with Short Counts

ÁShort counts can occur in these situations:
ÅEncountering (end -of-file) EOF on reads.

ÅReading text lines from a terminal.

ÅReading and writing network sockets or Unix pipes.

ÁShort counts does not occur in these situations:
ÅReading from disk files (except for EOF)

ÅWriting to disk files.

ÁHow should you deal with short counts in your code?
ÅOne way is to u se the RIO (Robust I/O) package from your
textbookŚs csapp.c file (Appendix B).

11 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

File Metadata

ÁData about data, in this case file data.
ÅMaintained by kernel, accessed by users with the stat and fstat

functions.

 /* Metadata returned by the stat and fstat functions */
struct stat {
 dev_t st_dev ; /* device */
 ino_t st_ino ; /* inode */
 mode_t st_mode; /* protection and file type */
 nlink_t st_nlink ; /* number of hard links */
 uid_t st_uid ; /* user ID of owner */
 gid_t st_gid ; /* group ID of owner */
 dev_t st_rdev ; /* device type (if inode device) */
 off_t st_size ; /* total size, in bytes */
 unsigned long st_blksize ; /* blocksize for filesystem I/O */
 unsigned long st_blocks ; /* number of blocks allocated */
 time_t st_atime ; /* time of last access */
 time_t st_mtime ; /* time of last modification */
 time_t st_ctime ; /* time of last change */
};

12 SSE2030: Introduction to Computer Systems | Fall 2011| Jin-Soo Kim (jinsookim@skku.edu)

Accessing File Metadata

 /* statcheck.c - 1ÕÅÒÙÉÎÇ ÁÎÄ ÍÁÎÉÐÕÌÁÔÉÎÇ Á ÆÉÌÅƦÓ ÍÅÔÁ ÄÁÔÁ ǉƳ

int main (int argc , char ** argv)
{
 struct stat st ;
 char *type, * readok ;

 stat(argv [1], & st);
 if (S_ISREG(st.st_mode)) /* file type*/
 type = "regular";
 else if (S_ISDIR(st.st_mode))
 type = "directory";
 else
 type = "other";
 if ((st.st_mode & S_IRUSR)) /* OK to read?*/
 readok = "yes";
 else
 readok = "no";

 printf ("type: %s, read: %s \ n", type, readok);
 exit(0);
}

bass> ./ statcheck statcheck.c
type: regular, read: yes
bass> chmod 000 statcheck.c
bass> ./ statcheck statcheck.c
type: regular, read: no

