Representing and Manipulating Integers
Part II

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Bit-Level Operations in C

- **Operations &`, |, ~, ^ available in C**
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- **Examples (Char data type)**
 - ~0x41 → 0xBE
 - ~01000001₂ → 10111110₂
 - ~0x00 → 0xFF
 - ~00000000₂ → 11111111₂
 - 0x69 & 0x55 → 0x41
 - 01101001₂ & 01010101₂ → 01000001₂
 - 0x69 | 0x55 → 0x7D
 - 01101001₂ | 01010101₂ → 01111111₂
 - 0x69 ^ 0x55 → 0x4C
 - 01101001₂ ^ 01010101₂ → 00111100₂
Logic Operations in C

- Contrast to logical operators
 - &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 --> 0x00
 - !0x00 --> 0x01
 - !!0x41 --> 0x01

 - 0x69 && 0x55 --> 0x01
 - 0x69 || 0x55 --> 0x01
 - if (p && *p) (avoids null pointer access)
Shift Operations

- **Left shift:** \(x \ll y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right shift:** \(x \gg y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate MSB on right
 - Useful with two’s complement integer representation

- **Undefined if** \(y < 0 \) or \(y \geq \) word size

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Addition (1)

- Integer addition example
 - 4-bit integers u, v
 - Compute true sum
 - True sum requires one more bit ("carry")
 - Values increase linearly with u and v
 - Forms planar surface
Addition (2)

- Unsigned addition
 - Ignores carry output
 - Wraps around
 - If true sum ≥ 2^w
 - At most once

True Sum

```
0 2^w 2^{w+1}
```

Overflow

Unsigned addition

Unsigned addition (4-bit word)
Addition (3)

- Signed addition
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

Signed addition

\[
\begin{align*}
+2^w & \\
+2^{w-1} & \\
0 & \\
-2^{w-1} & \\
-2^w & \\
\end{align*}
\]

Two's complement addition (4-bit word)

Positive overflow

True Sum

Negative overflow

Signed addition

Negative overflow

Positive overflow
Addition (4)

Signed addition in C

- Ignores carry output
- The low-order \(w \) bits are identical to unsigned addition

<table>
<thead>
<tr>
<th>Mode</th>
<th>(x)</th>
<th>(y)</th>
<th>(x + y)</th>
<th>Truncated (x + y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>3 [011]</td>
<td>7 [0111]</td>
<td>7 [111]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>6 [0110]</td>
<td>-2 [110]</td>
</tr>
</tbody>
</table>

Examples for \(w = 3 \)
Multiplication (1)

- **Ranges of \((x \times y)\)**
 - Unsigned: up to \(2^w\) bits
 \[
 0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1
 \]
 - Two’s complement min: up to \(2^w - 1\) bits
 \[
 x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}
 \]
 - Two’s complement max: up to \(2^w\) bits (only for TMin\(^2\))
 \[
 x \times y \leq (-2^{w-1})^2 = 2^{2w-2}
 \]

- **Maintaining exact results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Multiplication (2)

- **Unsigned multiplication in C**
 - Ignores high order \(w \) bits
 - Implements modular arithmetic

\[
UMult_w(u, v) = u \cdot v \mod 2^w
\]

Operands: \(w \) bits

True Product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits
Signed multiplication in C

- Ignores high order w bits
- The low-order w bits are identical to unsigned multiplication

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>x \cdot y</th>
<th>Truncated x \cdot y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>5 [101]</td>
<td>3 [011]</td>
<td>15 [001111]</td>
<td>7 [111]</td>
</tr>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>7 [111]</td>
<td>28 [011100]</td>
<td>4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4 [100]</td>
<td>-1 [111]</td>
<td>4 [000100]</td>
<td>-4 [100]</td>
</tr>
<tr>
<td>Unsigned</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
</tbody>
</table>

Examples for $w = 3$
Multiplication (4)

- **Power-of-2 multiply with shift**
 - \(u \ll k \) gives \(u \times 2^k \)
 - e.g., \(u \ll 3 = u \times 8 \)
 - Both signed and unsigned
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Diagram:

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
\times 2^k \\
\end{array}
\]

True Product: \(w+k \) bits

\[
\begin{array}{c}
\text{u} \times 2^k \\
\end{array}
\]

Discard \(k \) bits: \(w \) bits

\[
\begin{array}{c}
\text{UMult}_w(u, 2^k) \\
\text{TMult}_w(u, 2^k) \\
\end{array}
\]}
Multiplication (5)

- Compiled multiplication code
 - C compiler automatically generates shift/add code when multiplying by constant

```c
int mul12 (int x)
{
    return x * 12;
}
```

Compiled Arithmetic Operations

- `leal (%eax, %eax, 2), %eax` ; `t ← x + x * 2`
- `sall $2, %eax` ; `return t << 2`
Division (1)

- Unsigned power-of-2 divide with shift
 - $u >> k$ gives $\lfloor u / 2^k \rfloor$
 - Uses logical shift

\[u \quad \text{Operand} \quad / \quad 2^k \quad \text{Division} \quad u / 2^k \quad \text{Result} \]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Division (2)

- Compiled unsigned division code
 - Uses logical shift for unsigned
 - Logical shift written as `>>>` in Java

C Function

```
unsigned udiv8 (unsigned x)
{
    return x / 8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax ; return t >> 3
```
Division (3)

- **Signed power-of-2 divide with shift**
 - $x >> k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift (rounds wrong direction if $x < 0$)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y >> 1$</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y >> 4$</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y >> 8$</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Division (4)

- Correct power-of-2 divide
 - Want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (Round Toward 0) when $x < 0$
 - Compute as $\left\lfloor \frac{(x + 2^k - 1)}{2^k} \right\rfloor$
 - In C: $(x + (1 << k) - 1) >> k$
 - Biases dividend toward 0

- Case 1: No rounding
 - Biasing has no effect

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>x</th>
<th>$+$</th>
<th>$2^k - 1$</th>
<th>$\left\lfloor \frac{x}{2^k} \right\rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>00</td>
<td>11111111...11</td>
</tr>
<tr>
<td>$x + (1 << k) - 1$</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>11111111...11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>$/$</th>
<th>2^k</th>
<th>$\left\lfloor \frac{x}{2^k} \right\rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>010</td>
<td>11111111...11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111111...11</td>
</tr>
</tbody>
</table>
Case 2: Rounding

- Biasing adds 1 to final result

\[
\begin{array}{c}
\text{Dividend:} \\
\hline
x + 2^k - 1 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{Divisor:} \\
\hline
/ 2^k \\
\hline
\left\lfloor \frac{x}{2^k} \right\rfloor \\
\end{array}
\]

- Incremented by 1
- Binary Point

- Incremented by 1

- Incremented by 1
Compiled signed division code

- Uses arithmetic shift for signed
- Arithmetic shift written as $>>$ in Java

Compiled Arithmetic Operations

<table>
<thead>
<tr>
<th>Label</th>
<th>Instruction</th>
<th>Operand(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>testl</td>
<td>%eax, %eax</td>
<td></td>
</tr>
<tr>
<td>js</td>
<td>L4</td>
<td></td>
</tr>
<tr>
<td>L3:</td>
<td>sarl $3, %eax</td>
<td></td>
</tr>
<tr>
<td>ret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4:</td>
<td>addl $7, %eax</td>
<td></td>
</tr>
<tr>
<td>jmp</td>
<td>L3</td>
<td></td>
</tr>
</tbody>
</table>

C Function

```c
int idiv8 (int x)
{
    return x / 8;
}
```

Explanation

```
if (x < 0)
    x += 7;
return x $>>$ 3;
```