Representing and Manipulating Floating Points

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
The Problem

How to represent fractional values with finite number of bits?

- 0.1
- 0.612
- 3.14159265358979323846264338327950288...
Fractional Binary Numbers (1)

Representation

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number:
 \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers (2)

Examples:

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2-7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111₁₂</td>
</tr>
</tbody>
</table>

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...₂ just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$
Fractional Binary Numbers (3)

- **Representable numbers**
 - Can only exactly represent numbers of the form $\frac{x}{2^k}$
 - Other numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{3}$</td>
<td>0.010101010101[01]...$_2$</td>
</tr>
<tr>
<td>$\frac{1}{5}$</td>
<td>0.001100110011[0011]...$_2$</td>
</tr>
<tr>
<td>$\frac{1}{10}$</td>
<td>0.0001100110011[0011]...$_2$</td>
</tr>
</tbody>
</table>
Fixed-Point Representation (1)

$p.q$ Fixed-point representation

- Use the rightmost q bits of an integer as representing a fraction
- **Example:** 17.14 fixed-point representation
 - 1 bit for sign bit
 - 17 bits for the integer part
 - 14 bits for the fractional part
 - An integer x represents the real number $x / 2^{14}$
 - Maximum value: $(2^{31} - 1) / 2^{14} \approx 131071.999$
Fixed-Point Representation (2)

Properties

- Convert n to fixed point: $n \times f$
- Add x and y: $x + y$
- Subtract y from x: $x - y$
- Add x and n: $x + n \times f$
- Multiply x by n: $x \times n$
- Divide x by n: x / n

x, y: fixed-point number

n: integer

$f = 1 \ll q$
Fixed-Point Representation (3)

- **Pros**
 - Simple
 - Can use integer arithmetic to manipulate
 - No floating-point hardware needed
 - Used in many low-cost embedded processors or DSPs (digital signal processors)

- **Cons**
 - Cannot represent wide ranges of numbers
 - 1 Light-Year = 9,460,730,472,580.8 km
 - The radius of a hydrogen atom: 0.000000000025 m
Representing Floating Points

- **IEEE standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - William Kahan, a primary architect of IEEE 754, won the Turing Award in 1989.
 - Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard.
FP Representation

- **Numerical form:** \(-1^s \times M \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand \(M\) normally a fractional value in range [1.0, 2.0)
 - Exponent \(E\) weights value by power of two

- **Encoding**
 - MSB is sign bit
 - \(exp\) field encodes \(E\) (Exponent)
 - \(frac\) field encodes \(M\) (Mantissa)
FP Precisions

- **Encoding**

 - MSB is sign bit
 - **exp** field encodes E (Exponent)
 - **frac** field encodes M (Mantissa)

- **Sizes**

 - Single precision: 8 **exp** bits, 23 **frac** bits (32bits total)
 - Double precision: 11 **exp** bits, 52 **frac** bits (64bits total)
 - Extended precision: 15 **exp** bits, 63 **frac** bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits (1 bit wasted)
Normalized Values (1)

- Condition: \(\text{exp} \neq 000...0 \) and \(\text{exp} \neq 111...1 \)

- Exponent coded as biased value
 - \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value denoted by \(\text{exp} \)
 - \(\text{Bias} \): Bias value
 - Single precision: 127 (\(\text{Exp} \): 1..254, \(E \): -126..127)
 - Double precision: 1023 (\(\text{Exp} \): 1..2046, \(E \): -1022..1023)

- Significand coded with implied leading 1
 - \(M = 1.xxx...x_2 \)
 - Minimum when 000...0 (\(M = 1.0 \))
 - Maximum when 111...1 (\(M = 2.0 - \varepsilon \))
 - Get extra leading bit for “free”
Normalized Values (2)

- **Value:**
 \[\text{float } f = 2003.0; \]

 \[2003_{10} = 11111010011_2 = 1.1111010011_2 \times 2^{10} \]

- **Significand**

 \[M = 1.1111010011_2 \]

 \[\text{frac} = 111101001100000000000000_2 \]

- **Exponent**

 \[E = 10 \]

 \[\text{Exp} = E + \text{Bias} = 10 + 127 = 137 = 10001001_2 \]

Floating Point Representation:

<table>
<thead>
<tr>
<th>Hex:</th>
<th>4</th>
<th>4</th>
<th>F</th>
<th>A</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary:</td>
<td>0100</td>
<td>0100</td>
<td>1111</td>
<td>1010</td>
<td>0110</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>137:</td>
<td>100</td>
<td>0100</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003:</td>
<td>1111</td>
<td>1010</td>
<td>0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Denormalized Values

- **Condition**: `exp = 000...0`

- **Value**
 - Exponent value `E = 1 - Bias`
 - Significand value `M = 0.xxx...x_2` (no implied leading 1)

- **Cases**
 - `exp = 000...0, frac = 000...0`
 - Represents value 0
 - Note that have distinct values +0 and -0
 - `exp = 000...0, frac ≠ 000...0`
 - Numbers very close to 0.0
 - “Gradual underflow”: possible numeric values are spaced evenly near 0.0
Special Values

- **Condition: exp = 111...1**

- **Cases**
 - **exp = 111...1, frac = 000...0**
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - e.g. 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -∞
 - **exp = 111...1, frac ≠ 000...0**
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - e.g., sqrt(-1), ∞ - ∞, ∞ * 0, ...
Tiny FP Example (1)

- **8-bit floating point representation**
 - The sign bit is in the most significant bit
 - The next four bits are the `exp`, with a bias of 7
 - The last three bits are the `frac`

- **Same general form as IEEE format**
 - Normalized, denormalized
 - Representation of 0, NaN, infinity
Tiny FP Example (2)

Values related to the exponent \((Bias = 7)\)

<table>
<thead>
<tr>
<th>Description</th>
<th>Exp</th>
<th>exp</th>
<th>(E = \text{Exp} - \text{Bias})</th>
<th>(2^E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denormalized</td>
<td>0</td>
<td>0000</td>
<td>-6</td>
<td>1/64</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0001</td>
<td>-6</td>
<td>1/64</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0010</td>
<td>-5</td>
<td>1/32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0011</td>
<td>-4</td>
<td>1/16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0100</td>
<td>-3</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0101</td>
<td>-2</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0110</td>
<td>-1</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0111</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1001</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1010</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1011</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1100</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1101</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1110</td>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>inf, NaN</td>
<td>15</td>
<td>1111</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Dynamic range

<table>
<thead>
<tr>
<th>Description</th>
<th>Bit representation</th>
<th>e</th>
<th>E</th>
<th>f</th>
<th>M</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0 0000 000</td>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 0000 001</td>
<td>0</td>
<td>-6</td>
<td>1/8</td>
<td>1/8</td>
<td>1/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 010</td>
<td>0</td>
<td>-6</td>
<td>2/8</td>
<td>2/8</td>
<td>2/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 011</td>
<td>0</td>
<td>-6</td>
<td>3/8</td>
<td>3/8</td>
<td>3/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 110</td>
<td>0</td>
<td>-6</td>
<td>6/8</td>
<td>6/8</td>
<td>6/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 111</td>
<td>0</td>
<td>-6</td>
<td>7/8</td>
<td>7/8</td>
<td>7/512</td>
</tr>
<tr>
<td>Smallest pos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0001 000</td>
<td>1</td>
<td>-6</td>
<td>0</td>
<td>8/8</td>
<td>8/512</td>
</tr>
<tr>
<td></td>
<td>0 0001 001</td>
<td>1</td>
<td>-6</td>
<td>1/8</td>
<td>9/8</td>
<td>9/512</td>
</tr>
<tr>
<td></td>
<td>0 0110 110</td>
<td>6</td>
<td>-1</td>
<td>6/8</td>
<td>14/8</td>
<td>14/16</td>
</tr>
<tr>
<td></td>
<td>0 0110 111</td>
<td>6</td>
<td>-1</td>
<td>7/8</td>
<td>15/8</td>
<td>15/16</td>
</tr>
<tr>
<td>Largest denorm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0111 000</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>8/8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0 0111 001</td>
<td>7</td>
<td>0</td>
<td>1/8</td>
<td>9/8</td>
<td>9/8</td>
</tr>
<tr>
<td></td>
<td>0 0111 010</td>
<td>7</td>
<td>0</td>
<td>2/8</td>
<td>10/8</td>
<td>10/8</td>
</tr>
<tr>
<td></td>
<td>0 1110 110</td>
<td>14</td>
<td>7</td>
<td>6/8</td>
<td>14/8</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>0 1110 111</td>
<td>14</td>
<td>7</td>
<td>7/8</td>
<td>15/8</td>
<td>240</td>
</tr>
<tr>
<td>Largest norm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1111 000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+∞</td>
</tr>
</tbody>
</table>
Tiny FP Example (4)

Encoded values (nonnegative numbers only)

- **0 1101 XXX = (8/8 ~ 15/8)\times2^6**
- **0 1110 XXX = (8/8 ~ 15/8)\times2^7**
- **0 0111 XXX = (8/8 ~ 15/8)\times2^0**
- **0 1000 XXX = (8/8 ~ 15/8)\times2^1**
- **0 0011 XXX = (8/8 ~ 15/8)\times2^{-6}**
- **0 0001 XXX = (8/8 ~ 15/8)\times2^{-6}**
- **0 0011 XXX = (8/8 ~ 15/8)\times2^{-4}**

(Without denormalization)

- **0 0000 XXX = (8/8 ~ 15/8)\times2^{-7}**
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>000 ... 00</td>
<td>000 ... 00</td>
<td>0.0</td>
</tr>
</tbody>
</table>
| Smallest Positive denormalized | 000 ... 00 | 000 ... 01 | Single: $2^{-23} \times 2^{-126} \approx 1.4 \times 10^{-45}$
Double: $2^{-52} \times 2^{-1022} \approx 4.9 \times 10^{-324}$ |
| Largest Denormalized | 000 ... 00 | 111 ... 11 | Single: $(1.0 - \epsilon) \times 2^{-126} \approx 1.18 \times 10^{-38}$
Double: $(1.0 - \epsilon) \times 2^{-1022} \approx 2.2 \times 10^{-308}$ |
| Smallest Positive Normalized | 000 ... 01 | 000 ... 00 | Single: 1.0×2^{-126}, Double: 1.0×2^{-1022}
(Just larger than largest denormalized) |
| One | 011 ... 11 | 000 ... 00 | 1.0 |
| Largest Normalized | 111 ... 10 | 111 ... 11 | Single: $(2.0 - \epsilon) \times 2^{127} \approx 3.4 \times 10^{38}$
Double: $(2.0 - \epsilon) \times 2^{1023} \approx 1.8 \times 10^{308}$ |
Special Properties

- **FP zero same as integer zero**
 - All bits = 0

- **Can (almost) use unsigned integer comparison**
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. Infinity
Floating Point in C (1)

- **C guarantees two levels**
 - `float` (single precision) vs. `double` (double precision)

- **Conversions**
 - `double` or `float` → `int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN
 - Generally sets to TMin
 - `int` → `double`
 - Exact conversion, as long as `int` has ≤ 53 bit word size
 - `int` → `float`
 - Will round according to rounding mode
Floating Point in C (2)

- Example 1:

```c
#include <stdio.h>

int main () {
    int n = 123456789;
    int nf, ng;
    float f;
    double g;

    f = (float) n;
    g = (double) n;
    nf = (int) f;
    ng = (int) g;
    printf ("nf=%d ng=%d\n", nf, ng);
}
```
Floating Point in C (3)

- Example 2:

```c
#include <stdio.h>

int main () {
    double d;

    d = 1.0 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1
    + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;

    printf ("d = %.20f\n", d);
}
```
Floating Point in C (4)

- Example 3:

```c
#include <stdio.h>

int main () {
    float f1 = (3.14 + 1e20) - 1e20;
    float f2 = 3.14 + (1e20 - 1e20);

    printf ("f1 = %f, f2 = %f\n", f1, f2);
}
```
Ariane 5 tragedy (June 4, 1996)
- Exploded 37 seconds after liftoff
- Satellites worth $500 million

Why?
- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
 - Careful analysis of Ariane 4 trajectory proved 16-bit is enough
- Reused a module from 10-year-old s/w
 - Overflowed for Ariane 5
 - No precise specification for the S/W
Summary

- IEEE floating point has clear mathematical properties
 - Represents numbers of form $M \times 2^E$
 - Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
 - Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers and serious numerical applications programmers