Internet

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Internet

- Global IP Internet
 - Most famous example of an internet.
 - Based on the TCP/IP protocol family.
 - IP (Internet Protocol):
 » Provides basic naming scheme and unreliable delivery capability of packets (datagrams) from host-to-host.
 - UDP (Unreliable Datagram Protocol)
 » Uses IP to provide unreliable datagram delivery from process-to-process.
 - TCP (Transmission Control Protocol)
 » Uses IP to provide reliable byte streams from process-to-process over connections.
 - Accessed via a mix of Unix file I/O and functions from the Sockets interface.
Network Layer (1)

- **Network layer**
 - Given a packet, get it to the other side of a large collection of networks.
 - Implemented in every host, router.
 - Portability: provides an interface that works across heterogeneous networks
 - Scalability: provides names and routing that works with billions of end hosts
Network Layer (2)

- **IP addressing**
 - IP addresses form a 2-level hierarchy.
 - Network part + host part
 - Hosts on same network have same prefix.

<table>
<thead>
<tr>
<th>Class</th>
<th>Network Range</th>
<th>Host Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0.0.0 to 127.255.255.255</td>
<td>1.0.0.0 to 127.255.255.255</td>
</tr>
<tr>
<td>B</td>
<td>128.0.0.0 to 191.255.255.255</td>
<td>128.0.0.0 to 191.255.255.255</td>
</tr>
<tr>
<td>C</td>
<td>192.0.0.0 to 239.255.255.255</td>
<td>192.0.0.0 to 239.255.255.255</td>
</tr>
<tr>
<td>D</td>
<td>240.0.0.0 to 247.255.255.255</td>
<td>240.0.0.0 to 247.255.255.255</td>
</tr>
</tbody>
</table>

32 bits
Network Layer (3)

- **IP**
 - Connectionless (datagram) protocol
 - No call setup at network layer.
 - Packets between same host-dest pair may take different paths.
 - Host-to-host
 - IP gives each host a globally unique IP address
 - Best effort service model
 - IP does its best to deliver it.
 - No attempt is made to recover from lost, reordered, duplicated, or corrupted packets.
 - Synthesize reliability at higher levels. (e.g. TCP)
 - Portable
 - A common packet format that gets used on all networks.
 - Invisibly translating, splitting and reassembly packet as it traverses over different physical networks.
 - A global, network-wide address space.
Network Layer (4)

- **IP (cont’d)**
 - **Advantages**
 - No round-trip delay to setup connection.
 - Each packet forwarded independently of last: if switch or link fails, will be routed around it.
 - Resources allocated dynamically, which let each “flow” achieve peak bandwidth of idle link.
 - **Disadvantages**
 - Busy link = unpredictable, wild service fluctuations
 - Each packet carries full destination address, which makes per packet overhead higher.
 - Packets can be dropped in intermediate nodes.
Network Layer (5)

- **IP routing example:** (A to E)
 - Look up network address of E
 - E on different network
 - Routing table: next hop router to E is 223.1.1.4
 - Link layer sends datagram to router 223.1.14 inside link layer frame
 - Datagram arrives at 223.1.1.4
 - continued...

<table>
<thead>
<tr>
<th>Dest. Net.</th>
<th>next router</th>
<th>Nhops</th>
</tr>
</thead>
<tbody>
<tr>
<td>223.1.1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>223.1.2</td>
<td>223.1.1.4</td>
<td>2</td>
</tr>
<tr>
<td>223.1.3</td>
<td>223.1.1.4</td>
<td>2</td>
</tr>
</tbody>
</table>
IETF RFC 1149 (1)

- **IP datagrams on avian carriers**

 - Avian carriers can provide high delay, low throughput, and low altitude service.

 - The connection topology is limited to a single point-to-point path for each carrier, ... but many carriers can be used without significant interference with each other... This is because of the 3D ether space available to the carriers, ...

 - The carriers have an intrinsic collision avoidance system, which increases availability.

 - Unlike some network technologies, such as packet radio, communication is not limited to line-of-sight distance.
IETF RFC 1149 (2)

- A test packet
IETF RFC 1149 (3)

- A packet on a pigeon leg
Ping results

Script started on Sat Apr 28 11:24:09 2001
vegard@gyversalen:~$ /sbin/ifconfig tun0

```
un0   Link enca:Point-to-Point Protocol
    inet addr:10.0.3.2 P-t-P:10.0.3.1 Mask:255.255.255.255
    UP POINTOPOINT RUNNING NOARP MULTICAST MTU:150 Metric:1
    RX packets:1 errors:0 dropped:0 overruns:0 frame:0
    TX packets:2 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0
    RX bytes:88 (88.0 b) TX bytes:168 (168.0 b)
```

vegard@gyversalen:~$ ping -i 900 10.0.3.1
PING 10.0.3.1 (10.0.3.1): 56 data bytes
64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 time=6165731.1 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp_seq=1 ttl=255 time=6388671.9 ms
--- 10.0.3.1 ping statistics ---
9 packets transmitted, 4 packets received, 55% packet loss
round-trip min/avg/max = 3211900.8/5222806.6/6388671.9 ms

vegard@gyversalen:~$ exit
Script done on Sat Apr 28 14:14:28 2001
Transport Layer (1)

- Transport layer
 - Data transfer between processes.
 (cf) Network layer: data transfer between end systems
 - Use “ports”.
 - **TCP**: reliable, in-order unicast delivery
 - **UDP**: unreliable (“best-effort”) unordered unicast or multicast delivery
 - Services not available:
 - Real-time
 - Bandwidth guarantees
 - Reliable multicast
Transport Layer (2)

- UDP (User Datagram Protocol)
 - Best-effort, process-to-process
 - may be lost or delivered out of order to application
 - Connectionless
 - No handshaking between UDP sender & receiver
 - Each UDP segment handled independently of others
 - No congestion control: UDP can blast away as fast as desired.
 - Lives on top of IP: adds corruption detection and "ports"
 - Ports allow multiple connections; multiple application protocols between the same machines
 - HTTP: 80, TELNET: 23, SMTP: 25, DNS:53, FTP: 21
Transport Layer (3)

- TCP (Transmission Control Protocol)
 - Point-to-point: One sender, one receiver
 - Reliable, in-order byte stream
 - No message boundaries
 - Pipelined
 - TCP congestion and flow control set window size
 - Full duplex data
 - Bi-directional data flow
 - Connection-oriented
 - Handshaking (exchange of control messages) initializes sender, receiver state before data exchange
 - Flow-controlled
 - Sender will not overwhelm receiver.
Internet Applications

Common applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Application layer protocol</th>
<th>Underlying transport protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail</td>
<td>smtp [RFC 821]</td>
<td>TCP</td>
</tr>
<tr>
<td>Remote terminal access</td>
<td>telnet [RFC 854]</td>
<td>TCP</td>
</tr>
<tr>
<td>Web</td>
<td>http [RFC 2068]</td>
<td>TCP</td>
</tr>
<tr>
<td>File transfer</td>
<td>ftp [RFC 959]</td>
<td>TCP</td>
</tr>
<tr>
<td>Streaming multimedia</td>
<td>proprietary (e.g., RealNetworks)</td>
<td>TCP or UDP</td>
</tr>
<tr>
<td>Remote file server</td>
<td>NFS</td>
<td>TCP or UDP</td>
</tr>
<tr>
<td>Internet telephony</td>
<td>proprietary (e.g., Skype)</td>
<td>Typically UDP</td>
</tr>
</tbody>
</table>
Network Addressing

- **Data link: MAC address**
 - 48 bits (Ethernet)

- **Network: IP address**
 - 32 bits (IPv4), 128 bits (IPv6)
 - Hierarchical: network + host part

- **Transport: Socket**
 - <host address, port number>

- **Application: Domain name**
 - Hierarchical
IP Addresses (1)

- **Storing IP addresses**
 - IP addresses (and other integer values such as port number) are always stored in memory in network byte order (big endian)

```c
/* Internet address structure */
struct in_addr {
    unsigned int s_addr; /* network byte order (big-endian) */
};
```

- Handy network byte-order conversion functions:
 - `htonl()`: long int from host to network byte order
 - `htons()`: short int from host to network byte order
 - `ntohl()`: long int from network to host byte order
 - `ntohs()`: short int from network to host byte order
IP Addresses (2)

Dotted decimal notation

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period.
 - IP address 0x739198B5 = 115.145.152.181

- Converting functions
 - `inet_aton()`: a dotted decimal string to an IP address in network byte order
 - `inet_ntoa()`: an IP address in network byte order to its corresponding dotted decimal string
 - “n” denotes network representation. “a” denotes application representation.
Domain Naming System (1)

- **Internet domain names**

 ![Domain Naming System Diagram]

- **First-level domain names**
 - mil
 - edu
 - com
 - gov
 - kr
 - jp
 - ...

- **Second-level domain names**
 - cmu
 - berkeley
 - amazon
 - ac
 - co
 - re
 - ne
 - go

- **Third-level domain names**
 - kaist
 - skku
 - adam
 - cs
 - icc

 - 143.248.136.3
 - 143.248.136.2
 - 115.145.152.181

Domain Naming System (2)

- **Second-level domain names**
 - cmu
 - berkeley
 - amazon
 - ac
 - co
 - re
 - ne
 - go

- **Third-level domain names**
 - kaist
 - skku
 - adam
 - cs
 - icc

 - 143.248.136.3
 - 143.248.136.2
 - 115.145.152.181
Domain Naming System (2)

- DNS
 - The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database.
 - Conceptually, programmers can view the DNS database as a collection of millions of host entry structures.
 - Functions for retrieving host entries from DNS:
 - `gethostbyname()`: query key is a DNS domain name.
 - `gethostbyaddr()`: query key is an IP address

```c
/* DNS host entry structure */
struct hostent {
    char  *h_name;       /* official domain name of host */
    char  **h_aliases;   /* null-terminated array of domain names */
    int  h_addrtype;     /* host address type (AF_INET) */
    int  h_length;       /* length of an address, in bytes */
    char  **h_addr_list; /* null-terminated array of in_addr structs */
};
```
Properties of DNS host entries

- Each host entry is an equivalence class of domain names and IP addresses.
- Each host has a locally defined domain name localhost which always maps to the loopback address (127.0.0.1)
- Different kinds of mappings are possible:
 - Simple case: 1-1 mapping
 » icc.skku.ac.kr maps to 115.145.152.181
 - Multiple domain names mapped to the same IP address:
 » www.skku.edu and www.skku.ac.kr both map to 115.145.129.40
 - Single domain name mapped to multiple IP addresses:
 » www.google.com maps to 74.125.71.104, 74.125.71.105, ...
int main(int argc, char **argv) { /* argv[1] is a domain name * or dotted decimal IP addr */
 char **pp;
 struct in_addr addr;
 struct hostent *hostp;

 if (inet_aton(argv[1], &addr) != 0)
 hostp = gethostbyaddr((const char *)&addr, sizeof(addr), AF_INET);
 else
 hostp = gethostbyname(argv[1]);
 printf("official hostname: %s\n", hostp->h_name);

 for (pp = hostp->h_aliases; *pp != NULL; pp++)
 printf("alias: %s\n", *pp);

 for (pp = hostp->h_addr_list; *pp != NULL; pp++) {
 addr.s_addr = *((unsigned int *)*pp);
 printf("address: %s\n", inet_ntoa(addr));
 }
}
Domain Naming System (5)

Querying DNS from the command line

- Domain Information Groper (dig) provides a scriptable command line interface to DNS.
- (cf.) nslookup, host

```
linux> dig +short icc.skku.ac.kr
115.145.152.181
linux> dig +short -x 115.145.152.181
icc.skku.ac.kr.
linux> dig +short amazon.com
72.21.194.1
72.21.211.176
72.21.214.128
linux> host icc.skku.ac.kr
icc.skku.ac.kr has address 115.145.152.181
```