Representing and Manipulating Floating Points

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
The Problem

- How to represent fractional values with finite number of bits?
 - 0.1
 - 0.612
 - 3.14159265358979323846264338327950288...
Fractional Binary Numbers (1)

Representation

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number:

\[
\sum_{k=-j}^{i} b_k \cdot 2^k
\]
Fractional Binary Numbers (2)

- **Examples:**

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2-7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111₁₂</td>
</tr>
</tbody>
</table>

- **Observations**
 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of form 0.111111...₂ just below 1.0
 - \(1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0\)
 - Use notation 1.0 – \(\varepsilon\)
Fractional Binary Numbers (3)

- **Representable numbers**
 - Can only exactly represent numbers of the form $x/2^k$
 - Other numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.010101010101[01]…₂</td>
</tr>
<tr>
<td>1/5</td>
<td>0.001100110011[0011]…₂</td>
</tr>
<tr>
<td>1/10</td>
<td>0.0001100110011[0011]…₂</td>
</tr>
</tbody>
</table>
Fixed-Point Representation (1)

$p.q$ Fixed-point representation

- Use the rightmost q bits of an integer as representing a fraction
- Example: 17.14 fixed-point representation
 - 1 bit for sign bit
 - 17 bits for the integer part
 - 14 bits for the fractional part
 - An integer x represents the real number $x / 2^{14}$
 - Maximum value: $(2^{31} - 1) / 2^{14} \approx 131071.999$

![Diagram of fixed-point representation](image)
Fixed-Point Representation (2)

- **Properties**
 - Convert \(n \) to fixed point: \(n \times f \)
 - Add \(x \) and \(y \): \(x + y \)
 - Subtract \(y \) from \(x \): \(x - y \)
 - Add \(x \) and \(n \): \(x + n \times f \)
 - Multiply \(x \) by \(n \): \(x \times n \)
 - Divide \(x \) by \(n \): \(x / n \)

Example

- Convert \(n = 15.25 \) to fixed point: \(n \times f \)
- Add \(x = 13.5 \) and \(y = 1.75 \): \(x + y \)
- Subtract \(y = 1.75 \) from \(x = 13.5 \): \(x - y \)
- Add \(x = 13.5 \) and \(n = 2 \): \(x + n \times f \)
- Multiply \(x = 13.5 \) by \(n = 2 \): \(x \times n \)
- Divide \(x = 13.5 \) by \(n = 2 \): \(x / n \)

\(x, y \): fixed-point number
\(n \): integer
\(f = 1 \ll q \)
Fixed-Point Representation (3)

- **Pros**
 - Simple
 - Can use integer arithmetic to manipulate
 - No floating-point hardware needed
 - Used in many low-cost embedded processors or DSPs (digital signal processors)

- **Cons**
 - Cannot represent wide ranges of numbers
 - 1 Light-Year = 9,460,730,472,580.8 km
 - The radius of a hydrogen atom: 0.000000000025 m
Representing Floating Points

- **IEEE standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - William Kahan, a primary architect of IEEE 754, won the Turing Award in 1989.
 - Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard.
FP Representation

- **Numerical form:** \(-1^s \times M \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand \(M\) normally a fractional value in range [1.0, 2.0)
 - Exponent \(E\) weights value by power of two

- **Encoding**
 - MSB is sign bit
 - \(\text{exp}\) field encodes \(E\) (Exponent)
 - \(\text{frac}\) field encodes \(M\) (Mantissa)
FP Precisions

- **Encoding**
 - MSB is sign bit
 - exp field encodes E (Exponent)
 - frac field encodes M (Mantissa)

- **Sizes**
 - Single precision: 8 exp bits, 23 frac bits (32bits total)
 - Double precision: 11 exp bits, 52 frac bits (64bits total)
 - Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits (1 bit wasted)
Normalized Values (1)

- **Condition:** \(\text{exp} \neq 000...0 \) and \(\text{exp} \neq 111...1 \)

- **Exponent coded as biased value**
 - \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value denoted by \(\text{exp} \)
 - \(\text{Bias} \): Bias value
 - Single precision: 127 (\(\text{Exp} : 1..254, \text{E} : -126..127 \))
 - Double precision: 1023 (\(\text{Exp} : 1..2046, \text{E} : -1022..1023 \))

- **Significand coded with implied leading 1**
 - \(M = 1.xxx...x_2 \)
 - Minimum when 000...0 (\(M = 1.0 \))
 - Maximum when 111...1 (\(M = 2.0 - \varepsilon \))
 - Get extra leading bit for "free"
Normalized Values (2)

- **Value:**
 \[
 \text{float } f = 2003.0; \\
 2003_{10} = 11111010011_{2} = 1.1111010011_{2} \times 2^{10}
 \]

- **Significand**
 \[
 M = 1.1111010011_{2} \\
 \text{frac} = 111101001100000000000000_{2}
 \]

- **Exponent**
 \[
 E = 10 \\
 \text{Exp} = E + \text{Bias} = 10 + 127 = 137 = 10001001_{2}
 \]

Floating Point Representation:

- **Hex:** 4 4 F A 6 0 0 0 0
- **Binary:** 0100 0100 1111 1010 0110 0000 0000 0000
- **137:** 100 0100 1
- **2003:** 1111 1010 0110
Denormalized Values

- Condition: \(\text{exp} = 000...0 \)
- Value
 - Exponent value \(E = 1 - \text{Bias} \)
 - Significand value \(M = 0.xxx...x_2 \) (no implied leading 1)
- Cases
 - \(\text{exp} = 000...0, \text{frac} = 000...0 \)
 - Represents value 0
 - Note that have distinct values +0 and -0
 - \(\text{exp} = 000...0, \text{frac} \neq 000...0 \)
 - Numbers very close to 0.0
 - “Gradual underflow”: possible numeric values are spaced evenly near 0.0
Special Values

- **Condition:** exp = 111...1

- **Cases**
 - exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - e.g. 1.0/0.0 = -1.0/-0.0 = $+\infty$, 1.0/-0.0 = $-\infty$
 - exp = 111...1, frac \neq 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - e.g., sqrt(-1), $\infty - \infty$, $\infty * 0$, ...
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>000 ... 00</td>
<td>000 ... 00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Positive denormalized</td>
<td>000 ... 00</td>
<td>000 ... 01</td>
<td>Single: $2^{-23} \times 2^{-126} \approx 1.4 \times 10^{-45}$
Double: $2^{-52} \times 2^{-1022} \approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>000 ... 00</td>
<td>111 ... 11</td>
<td>Single: $(1.0 - \varepsilon) \times 2^{-126} \approx 1.18 \times 10^{-38}$
Double: $(1.0 - \varepsilon) \times 2^{-1022} \approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Positive Normalized</td>
<td>000 ... 01</td>
<td>000 ... 00</td>
<td>Single: 1.0×2^{-126}, Double: 1.0×2^{-1022}
(Just larger than largest denormalized)</td>
</tr>
<tr>
<td>One</td>
<td>011 ... 11</td>
<td>000 ... 00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>111 ... 10</td>
<td>111 ... 11</td>
<td>Single: $(2.0 - \varepsilon) \times 2^{127} \approx 3.4 \times 10^{38}$
Double: $(2.0 - \varepsilon) \times 2^{1023} \approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Special Properties

- **FP zero same as integer zero**
 - All bits = 0

- **Can (almost) use unsigned integer comparison**
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. Infinity
Floating Point in C (1)

- **C guarantees two levels**
 - float (single precision) vs. double (double precision)
- **Conversions**
 - double or float \rightarrow int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN
 » Generally sets to Tmin
 - int \rightarrow double
 - Exact conversion, as long as int has \leq 53 bit word size
 - int \rightarrow float
 - Will round according to rounding mode
Example 1:

```c
#include <stdio.h>

int main () {
    int n = 123456789;
    int nf, ng;
    float f;
    double g;

    f = (float) n;
    g = (double) n;
    nf = (int) f;
    ng = (int) g;
    printf ("nf=%d ng=%d\n", nf, ng);
}
```
Example 2:

```c
#include <stdio.h>

int main () {
    double d;
    
    d = 1.0 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1
        + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;

    printf ("d = %.20f\n", d);
}
```
Floating Point in C (4)

Example 3:

```c
#include <stdio.h>

int main ()
{
    float f1 = (3.14 + 1e20) - 1e20;
    float f2 = 3.14 + (1e20 - 1e20);

    printf ("f1 = %f, f2 = %f\n", f1, f2);
}
```
Ariane 5

- Ariane 5 tragedy (June 4, 1996)
 - Exploded 37 seconds after liftoff
 - Satellites worth $500 million

- Why?
 - Computed horizontal velocity as floating point number
 - Converted to 16-bit integer
 - Careful analysis of Ariane 4 trajectory proved 16-bit is enough
 - Reused a module from 10-year-old s/w
 - Overflowed for Ariane 5
 - No precise specification for the S/W
Summary

- IEEE floating point has clear mathematical properties
 - Represents numbers of form $M \times 2^E$
 - Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
 - Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers and serious numerical applications programmers