Representing and Manipulating Integers
Part II

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (Char data type)
 - ~0x41 → 0xBE
 ~01000001₂ → 10111110₂
 - ~0x00 → 0xFF
 ~00000000₂ → 11111111₂
 - 0x69 & 0x55 → 0x41
 01101001₂ & 01010101₂ → 01000001₂
 - 0x69 | 0x55 → 0x7D
 01101001₂ | 01010101₂ → 01111101₂
 - 0x69 ^ 0x55 → 0x4C
 01101001₂ ^ 01010101₂ → 00111100₂
Logic Operations in C

- Contrast to logical operators
 - &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 --> 0x00
 - !0x00 --> 0x01
 - !!0x41 --> 0x01
 - 0x69 && 0x55 --> 0x01
 - 0x69 || 0x55 --> 0x01
 - if (p && *p) (avoids null pointer access)
Shift Operations

- **Left shift:** \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right shift:** \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate MSB on right
 - Useful with two’s complement integer representation

- **Undefined if** \(y < 0 \) or \(y \geq \) word size

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Addition (1)

- Integer addition example
 - 4-bit integers u, v
 - Compute true sum
 - True sum requires one more bit ("carry")
 - Values increase linearly with u and v
 - Forms planar surface
Addition (2)

- Unsigned addition
 - Ignores carry output
 - Wraps around
 - If true sum $\geq 2^w$
 - At most once

True Sum

Overflow

2^{w+1}

2^w

0

Unsigned addition (4-bit word)
Addition (3)

- **Signed addition**
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

![Diagram of two's complement addition (4-bit word)]

True Sum

Positive overflow

Signed addition

Negative overflow

Positive overflow

Negative overflow
Signed addition in C

- Ignores carry output
- The low-order \(w \) bits are identical to unsigned addition

Examples for \(w = 3 \)

<table>
<thead>
<tr>
<th>Mode</th>
<th>(x)</th>
<th>(y)</th>
<th>(x + y)</th>
<th>Truncated (x + y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>3 [011]</td>
<td>7 [0111]</td>
<td>7 [111]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4 [100]</td>
<td>3 [011]</td>
<td>-1 [1111]</td>
<td>-1 [111]</td>
</tr>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>7 [111]</td>
<td>11 [1011]</td>
<td>3 [011]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4 [100]</td>
<td>-1 [111]</td>
<td>-5 [1011]</td>
<td>3 [011]</td>
</tr>
<tr>
<td>Unsigned</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>6 [0110]</td>
<td>6 [110]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>6 [0110]</td>
<td>-2 [110]</td>
</tr>
</tbody>
</table>
Multiplication (1)

- **Ranges of \(x \times y \)**
 - Unsigned: up to \(2^w \) bits
 \[
 0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1
 \]
 - Two’s complement min: up to \(2^w - 1 \) bits
 \[
 x \times y \geq (-2^{w-1}) (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}
 \]
 - Two’s complement max: up to \(2^w \) bits (only for TMin)
 \[
 x \times y \leq (-2^{w-1})^2 = 2^{2w-2}
 \]

- **Maintaining exact results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned multiplication in C

- Ignores high order \(w\) bits
- Implements modular arithmetic

\[
UMult_w(u, v) = u \cdot v \mod 2^w
\]

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>True Product: (2^w) bits</th>
<th>Discard (w) bits: (w) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(u \cdot v)</td>
<td>(UMult_w(u, v))</td>
</tr>
<tr>
<td>(v)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiplication (3)

- **Signed multiplication in C**
 - Ignores high order w bits
 - The low-order w bits are identical to unsigned multiplication

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>x · y</th>
<th>Truncated x · y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>7 [111]</td>
<td>28 [011100]</td>
<td>4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4 [100]</td>
<td>-1 [111]</td>
<td>4 [000100]</td>
<td>-4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
</tbody>
</table>

Examples for $w = 3$
Multiplication (4)

- **Power-of-2 multiply with shift**
 - $u << k$ gives $u \times 2^k$
 - e.g., $u << 3 == u \times 8$
 - Both signed and unsigned
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

<table>
<thead>
<tr>
<th>u</th>
<th>2^k</th>
<th>True Product: $w+k$ bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \cdot 2^k$</td>
<td>0</td>
<td>$u \cdot 2^k$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discard k bits: w bits</th>
<th>UMult$_w(u, 2^k)$</th>
<th>TMult$_w(u, 2^k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ldots 0 \ldots 0$</td>
<td>$\ldots 0 \ldots 0$</td>
<td>$\ldots 0 \ldots 0$</td>
</tr>
</tbody>
</table>
Compiled multiplication code

- C compiler automatically generates shift/add code when multiplying by constant

```c
int mul12 (int x)
{
    return x * 12;
}
```

Compiled Arithmetic Operations

- `leal (%eax, %eax, 2), %eax` ; `t ← x + x * 2`
- `sall $2, %eax` ; `return t << 2`
Division (1)

- **Unsigned power-of-2 divide with shift**
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

Example

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled unsigned division code

- Uses logical shift for unsigned
- Logical shift written as `>>>` in Java

C Function

```c
unsigned udiv8 (unsigned x)
{
    return x / 8;
}
```

Compiled Arithmetic Operations

```assembly
shrl $3, %eax ; return t >> 3
```
Division (3)

Signed power-of-2 divide with shift

- \(x >> k \) gives \(\lfloor x / 2^k \rfloor \)
- Uses arithmetic shift (rounds wrong direction if \(x < 0 \))

Operands:

\[
x \quad / \\
\quad 2^k
\]

\[
x / 2^k
\]

Result:

\[
\text{RoundDown} \left(x / 2^k \right)
\]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y >> 1)</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y >> 4)</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(y >> 8)</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Division (4)

- **Correct power-of-2 divide**
 - Want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (Round Toward 0) when $x < 0$
 - Compute as $\left\lfloor \frac{(x + 2^k - 1)}{2^k} \right\rfloor$
 - In C: $(x + (1 << k) - 1) >> k$
 - Biases dividend toward 0

- **Case 1: No rounding**
 - Biasing has no effect

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>x</th>
<th>$1\cdots0\cdots0\cdots0$</th>
<th>$+2^k-1$</th>
<th>$0\cdots00\cdots1\cdots11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x / 2^k$</td>
<td>$1\cdots1\cdots1\cdots0$</td>
<td>Binary Point</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Dividend: x
- Divisor: 2^k
- Result: $\left\lfloor \frac{x}{2^k} \right\rfloor$
Division (5)

Case 2: Rounding

- Biasing adds 1 to final result

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>x</th>
<th>$+2^k - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0 0 1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>$/ 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x / 2^k$</td>
<td>1 1 1 0 0</td>
</tr>
</tbody>
</table>

k

Incremented by 1

Binary Point

Incremented by 1
Division (6)

- Compiled signed division code
 - Uses arithmetic shift for signed
 - Arithmetic shift written as >> in Java

Compiled Arithmetic Operations

<table>
<thead>
<tr>
<th>testl</th>
<th>%eax, %eax</th>
</tr>
</thead>
<tbody>
<tr>
<td>js</td>
<td>L4</td>
</tr>
<tr>
<td>L3:</td>
<td></td>
</tr>
<tr>
<td>sarl</td>
<td>$3, %eax</td>
</tr>
<tr>
<td>ret</td>
<td></td>
</tr>
<tr>
<td>L4:</td>
<td></td>
</tr>
<tr>
<td>addl</td>
<td>$7, %eax</td>
</tr>
<tr>
<td>jmp</td>
<td>L3</td>
</tr>
</tbody>
</table>

C Function

```c
int idiv8 (int x)
{
    return x / 8;
}
```

Explanation

```c
if (x < 0)
    x += 7;
return x >> 3;
```