Representing Integers

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Unsigned Integers

- Encoding unsigned integers

\[B = [b_{w-1}, b_{w-2}, \ldots, b_0] \quad x = \text{0000 0111 1101 0011}_2 \]

\[D(B) = \sum_{i=0}^{w-1} b_i \cdot 2^i \]

\[D(x) = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^1 + 2^0 \]

\[= 1024 + 512 + 256 + 128 + 64 + 16 + 2 + 1 \]

\[= 2003 \]

- What is the range for unsigned values with \(w \) bits?
Signed Integers (I)

- Encoding positive numbers
 - Same as unsigned numbers

- Encoding negative numbers
 - Sign-magnitude representation
 - Ones’ complement representation
 - Two’s complement representation
Signed Integers (2)

- Sign-magnitude representation

- Two zeros
 - [000…00], [100..00]

- Used for floating-point numbers

\[S(B) = (-1)^{b_{w-1}} \cdot \left(\sum_{i=0}^{w-2} b_i \cdot 2^i \right) \]
Signed Integers (3)

- Ones’ complement representation

\[O(B) = -b_{w-1}(2^{w-1} - 1) + \left(\sum_{i=0}^{w-2} b_i \cdot 2^i \right) \]

- Easy to find \(-n\)
- Two zeros
 - \([000..00], [111..11]\)
- No longer used
Signed Integers (4)

- Two’s complement representation

\[O(B) = -b_{w-1} \cdot 2^{w-1} + \left(\sum_{i=0}^{w-2} b_i \cdot 2^i \right) \]

- Unique zero
- Easy for hardware
 - leading 0 \geq 0
 - leading 1 $<$ 0
- Used by almost all modern machines
Signed Integers (5)

- Two’s complement representation (cont’d)
 - Following holds for two’s complement
 \[\sim x + 1 = -x \]

- Complement
 - Observation: \[\sim x + x = 111\ldots1_2 = -1 \]

- Increment
 \[\sim x + x = -1 \]
 \[\sim x + x + (-x + 1) = -1 + (-x + 1) \]
 \[\sim x + 1 = -x \]
Numeric Ranges (I)

- **Unsigned values**
 - UMin = 0
 - UMax = $2^w - 1$

- **Two’s complement values**
 - Tmin = -2^{w-1}
 - Tmax = $2^{w-1} - 1$

<table>
<thead>
<tr>
<th>UMax</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
<td></td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

Values for $w = 16$
Numeric Ranges (2)

- Values for different word sizes

<table>
<thead>
<tr>
<th></th>
<th>w = 8</th>
<th>w = 16</th>
<th>w = 32</th>
<th>w = 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- Observations
 - $|\text{TMin}| = \text{TMax} + 1$ (Asymmetric range)
 - $\text{UMax} = 2 \times \text{TMax} + 1$

- In C programming
 - `#include <limits.h>`
 - `INT_MIN`, `INT_MAX`, `LONG_MIN`, `LONG_MAX`, `UINT_MAX`, ...
 - Values platform-specific
Type Conversion (1)

- **Unsigned**: w bits $\rightarrow w+k$ bits
 - Zero extension: just fill k bits with 0’s

```
unsigned short x = 2003;
unsigned ix = (unsigned) x;
```

![Diagram showing type conversion](image)
Type Conversion (2)

- Signed: \(w \) bits \(\rightarrow \) \(w+k \) bits
 - Given \(w \)-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value

- Sign extension
 - Make \(k \) copies of sign bit
Sign extension example

- Converting from smaller to larger integer type
- C automatically performs sign extension

Code Snippet

```c
short int x = 2003;
int ix = (int) x;
short int y = -2003;
int iy = (int) y;
```

Decimal, Hex, Binary Conversion Table

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2003</td>
<td>07 D3</td>
<td>00000111 11010011</td>
</tr>
<tr>
<td>ix</td>
<td>2003</td>
<td>00 07 D3</td>
<td>00000000 00000000 00000111 11010011</td>
</tr>
<tr>
<td>y</td>
<td>-2003</td>
<td>F8 2D</td>
<td>11111000 00101101</td>
</tr>
<tr>
<td>iy</td>
<td>-2003</td>
<td>FF FF F8 2D</td>
<td>11111111 11111111 11111000 00101101</td>
</tr>
</tbody>
</table>
Type Conversion (4)

- **Unsigned & Signed: $w+k$ bits $\rightarrow w$ bits**
 - Just truncate it to lower w bits
 - Equivalent to computing $x \mod 2^w$

Examples

```
unsigned int  x = 0xcafebabe;
unsigned short ix = (unsigned short) x;
int y = 0x2003beef;
short iy = (short) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>3405691582</td>
<td>11001010 11111110 10111010 10111110</td>
</tr>
<tr>
<td>ix</td>
<td>47806</td>
<td>10111010 10111110</td>
</tr>
<tr>
<td>y</td>
<td>537116399</td>
<td>00100000 00000011 10111110 11101111</td>
</tr>
<tr>
<td>iy</td>
<td>-16657</td>
<td>10111110 11101111</td>
</tr>
</tbody>
</table>
Type Conversion (5)

- **Unsigned → Signed**
 - The same bit pattern is interpreted as a signed number

\[
U2T_w(x) = \begin{cases}
 x, & x < 2^{w-1} \\
 x - 2^w, & x \geq 2^{w-1}
\end{cases}
\]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2003</td>
<td>07 D3</td>
</tr>
<tr>
<td>ix</td>
<td>2003</td>
<td>07 D3</td>
</tr>
<tr>
<td>y</td>
<td>47806</td>
<td>BA BE</td>
</tr>
<tr>
<td>iy</td>
<td>-17730</td>
<td>BA BE</td>
</tr>
</tbody>
</table>
Type Conversion (6)

- Signed \rightarrow Unsigned
 - Ordering inversion
 - Negative \rightarrow Big positive

$$T2U_w(x) = \begin{cases}
 x + 2^w, & x < 0 \\
 x, & x \geq 0
\end{cases}$$

<table>
<thead>
<tr>
<th>short</th>
<th>$x = 2003$;</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned short</td>
<td>ix = (unsigned short) x;</td>
</tr>
<tr>
<td>short</td>
<td>$y = -2003$;</td>
</tr>
<tr>
<td>unsigned short</td>
<td>iy = (unsigned short) y;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2003</td>
<td>07 D3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000111 11010011</td>
</tr>
<tr>
<td>ix</td>
<td>2003</td>
<td>07 D3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00000111 11010011</td>
</tr>
<tr>
<td>y</td>
<td>-2003</td>
<td>F8 2D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11111000 00101101</td>
</tr>
<tr>
<td>iy</td>
<td>63533</td>
<td>F8 2D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11111000 00101101</td>
</tr>
</tbody>
</table>
Type Casting in C

- Constants
 - By default, considered to be signed integers
 - Unsigned if they have “U” or “u” as suffix
 - e.g. 0U, 12345U, 0x1A2Bu

- Type casting
 - Explicit casting
 - Implicit casting via
 - Assignments
 - Procedure calls
Expression Evaluation in C

- If mix unsigned and signed in single expression, signed values implicitly cast to **unsigned**
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>unsigned</td>
<td>True</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>signed</td>
<td>True</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>unsigned</td>
<td>?</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>signed</td>
<td>?</td>
</tr>
<tr>
<td>(unsigned) -1 > -2</td>
<td>unsigned</td>
<td>?</td>
</tr>
<tr>
<td>2147483647 > -2147483647-1</td>
<td>signed</td>
<td>?</td>
</tr>
<tr>
<td>2147483647U > -2147483647-1</td>
<td>unsigned</td>
<td>?</td>
</tr>
<tr>
<td>2147483647 > (int) 2147483648U</td>
<td>signed</td>
<td>?</td>
</tr>
</tbody>
</table>
Example 1

```c
#include <stdio.h>

int main ()
{
    unsigned i;
    for (i = 10; i >= 0; i--)
        printf ("%u\n", i);
}
```
Example 2

```c
#include <stdio.h>

#define DELTA sizeof(int)

int main ()
{
    int i;
    for (i = 10; i - DELTA >= 0; i -= DELTA)
        printf ("%d\n", i);
}
```
Example 3

```c
void copy_mem1 (char *src, char *dest, unsigned len)
{
    unsigned i;
    for (i = 0; i < len; i++)
        *dest++ = *src++;
}
```
Example 4

```c
int sum_array (int a[], unsigned len)
{
    int i;
    int result = 0;

    for (i = 0; i <= len - 1; i++)
        result += a[i];

    return result;
}
```
Example 5

```c
#include <stdio.h>

int main ()
{
    unsigned char c;

    while ((c = getchar()) != EOF)
        putchar (c);
}
```
Lessons

▪ There are many tickly situations when you use unsigned integers – hard to debug

▪ Do not use just because numbers are nonnegative

▪ Use only when you need collections of bits with no numeric interpretation (“flags”)

▪ Few languages other than C support unsigned integers