Representing and Manipulating Floating Points

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
The Problem

▪ How to represent fractional values with finite number of bits?
 • 0.1
 • 0.612
 • 3.14159265358979323846264338327950288...

▪ Wide ranges of numbers
 • 1 Light-Year = 9,460,730,472,580.8 km
 • The radius of a hydrogen atom: 0.000000000025 m
Fractional Binary Numbers (1)

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{k=-j}^{i} b_k \cdot 2^k \)
Fractional Binary Numbers (2)

- **Examples:**

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-3/4</td>
<td>101.11_2</td>
</tr>
<tr>
<td>2-7/8</td>
<td>10.111_2</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111_2</td>
</tr>
</tbody>
</table>

- **Observations**

 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of form $0.111111..._2$ just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$
Fractional Binary Numbers (3)

- **Representable numbers**
 - Can only exactly represent numbers of the form $x / 2^k$
 - Other numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.01010101010101[01]...$_2$</td>
</tr>
<tr>
<td>1/5</td>
<td>0.001100110011[0011]...$_2$</td>
</tr>
<tr>
<td>1/10</td>
<td>0.0001100110011[0011]...$_2$</td>
</tr>
</tbody>
</table>
Fixed-Point Representation (1)

- **p.q** Fixed-point representation
 - Use the rightmost \(q \) bits of an integer as representing a fraction
 - **Example: 17.14 fixed-point representation**
 - 1 bit for sign bit
 - 17 bits for the integer part
 - 14 bits for the fractional part
 - An integer \(x \) represents the real number \(x / 2^{14} \)
 - Maximum value: \((2^{31} - 1) / 2^{14} \approx 131071.999 \)
Fixed-Point Representation (2)

Properties

- Convert \(n \) to fixed point: \(n \times f \)
- Add \(x \) and \(y \): \(x + y \)
- Subtract \(y \) from \(x \): \(x - y \)
- Add \(x \) and \(n \): \(x + n \times f \)
- Multiply \(x \) by \(n \): \(x \times n \)
- Divide \(x \) by \(n \): \(x \div n \)

\[x, y: \text{fixed-point number} \]
\[n: \text{integer} \]
\[f = 1 \ll q \]
Fixed-Point Representation (3)

▪ Pros
 • Simple
 • Can use integer arithmetic to manipulate
 • No floating-point hardware needed
 • Used in many low-cost embedded processors or DSPs (digital signal processors)

▪ Cons
 • Cannot represent wide ranges of numbers
Representing Floating Points

- **IEEE standard 754**
 - Established in 1985 as uniform standard for floating-point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - William Kahan, a primary architect of IEEE 754, won the Turing Award in 1989
 - Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard
FP Representation

- Numerical form: \(-l^s \times M \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand \(M\) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E\) weights value by power of two

- Encoding
 - MSB is sign bit \(s\)
 - \(exp\) field encodes \(E\) (Exponent)
 - \(frac\) field encodes \(M\) (Mantissa)
FP Precisions

- **Single precision**
 - 8 exp bits, 23 frac bits (32 bits total)

- **Double precision**
 - 11 exp bits, 52 frac bits (64 bits total)

- **Extended precision**
 - 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits (1 bit wasted)
Normalized Values

- **Condition:** $\text{exp} \neq 000\ldots0$ and $\text{exp} \neq 111\ldots1$

- **Exponent coded as a biased value**
 - $E = \text{Exp} - \text{Bias}$
 - Exp: unsigned value denoted by exp
 - Bias: Bias value ($=2^{k-1}-1$, where k is the number of exp bits)
 - Single precision ($k=8$): 127 (Exp: 1..254, E: -126..127)
 - Double precision ($k=11$): 1023 (Exp: 1..2046, E: -1022..1023)

- **Significand coded with implied leading 1**
 - $M = 1.xxx\ldots x_2$
 - Minimum when $\text{frac} = 000\ldots0$ ($M = 1.0$)
 - Maximum when $\text{frac} = 111\ldots1$ ($M = 2.0 - \varepsilon$)

- Get extra leading bit for “free”
Normalized Values: Example

- float \(f = 2003.0; \)
 - \(2003_{10} = 11111010011_2 = 1.1111010011_2 \times 2^{10} \)

- Significand
 - \(M = 1.1111010011_2 \)
 - \(frac = 11110100110000000000000_2 \)

- Exponent
 - \(E = 10 \)
 - \(Exp = E + Bias = 10 + 127 = 137 = 10001001_2 \)

<table>
<thead>
<tr>
<th>Hex:</th>
<th>4</th>
<th>4</th>
<th>F</th>
<th>A</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary:</td>
<td>0100</td>
<td>0100</td>
<td>1111</td>
<td>1010</td>
<td>0110</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>137:</td>
<td>100</td>
<td>0100</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003:</td>
<td>1111</td>
<td>1010</td>
<td>0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Denormalized Values

- **Condition**: $\exp = 000\ldots0$

- **Value**
 - Exponent value $E = 1 - \text{Bias}$
 - Significand value $M = 0.xxx\ldots x_2$ (no implied leading 1)

- **Case 1**: $\exp = 000\ldots0, \frac{\text{frac}}{\text{frac}} = 000\ldots0$
 - Represents value 0.0
 - Note that there are distinct values +0 and -0

- **Case 2**: $\exp = 000\ldots0, \frac{\text{frac}}{\text{frac}} \neq 000\ldots0$
 - Numbers very close to 0.0
 - “Gradual underflow”: possible numeric values are spaced evenly near 0.0
Special Values

- **Condition:** $\text{exp} = 111...1$

- **Case 1:** $\text{exp} = 111...1$, $\text{frac} = 000...0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - e.g. $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- **Case 2:** $\text{exp} = 111...1$, $\text{frac} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - e.g. $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$, …
Tiny FP Example (1)

- 8-bit floating point representation
 - The sign bit is in the most significant bit
 - The next four bits are the \(\text{exp} \), with a bias of 7
 - The last three bits are the \(\text{frac} \)

- Same general form as IEEE format
 - Normalized, denormalized
 - Representation of 0, NaN, infinity
Tiny FP Example (2)

- Values related to the exponent \(\text{Bias} = 7\)

<table>
<thead>
<tr>
<th>Description</th>
<th>Exp</th>
<th>exp</th>
<th>(E = \text{Exp} - \text{Bias})</th>
<th>(2^E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denormalized</td>
<td>0</td>
<td>0000</td>
<td>-6</td>
<td>1/64</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0001</td>
<td>-6</td>
<td>1/64</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0010</td>
<td>-5</td>
<td>1/32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0011</td>
<td>-4</td>
<td>1/16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0100</td>
<td>-3</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0101</td>
<td>-2</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0110</td>
<td>-1</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0111</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1001</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1010</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1011</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1100</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1101</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1110</td>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>inf, NaN</td>
<td>15</td>
<td>1111</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tiny FP Example (3)

Dynamic range

<table>
<thead>
<tr>
<th>Description</th>
<th>Bit representation</th>
<th>e</th>
<th>E</th>
<th>f</th>
<th>M</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0 0000 000</td>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Smallest pos.</td>
<td>0 0000 001</td>
<td>0</td>
<td>-6</td>
<td>1/8</td>
<td>1/8</td>
<td>1/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 010</td>
<td>0</td>
<td>-6</td>
<td>2/8</td>
<td>2/8</td>
<td>2/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 011</td>
<td>0</td>
<td>-6</td>
<td>3/8</td>
<td>3/8</td>
<td>3/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 110</td>
<td>0</td>
<td>-6</td>
<td>6/8</td>
<td>6/8</td>
<td>6/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 111</td>
<td>0</td>
<td>-6</td>
<td>7/8</td>
<td>7/8</td>
<td>7/512</td>
</tr>
<tr>
<td>Largest denorm.</td>
<td>0 0001 000</td>
<td>1</td>
<td>-6</td>
<td>0</td>
<td>8/8</td>
<td>8/512</td>
</tr>
<tr>
<td>Smallest norm.</td>
<td>0 0001 001</td>
<td>1</td>
<td>-6</td>
<td>1/8</td>
<td>9/8</td>
<td>9/512</td>
</tr>
<tr>
<td></td>
<td>0 0110 110</td>
<td>6</td>
<td>-1</td>
<td>6/8</td>
<td>14/8</td>
<td>14/16</td>
</tr>
<tr>
<td></td>
<td>0 0110 111</td>
<td>6</td>
<td>-1</td>
<td>7/8</td>
<td>15/8</td>
<td>15/16</td>
</tr>
<tr>
<td></td>
<td>0 0111 000</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>8/8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0 0111 001</td>
<td>7</td>
<td>0</td>
<td>1/8</td>
<td>9/8</td>
<td>9/8</td>
</tr>
<tr>
<td></td>
<td>0 0111 010</td>
<td>7</td>
<td>0</td>
<td>2/8</td>
<td>10/8</td>
<td>10/8</td>
</tr>
<tr>
<td></td>
<td>0 1110 110</td>
<td>14</td>
<td>7</td>
<td>6/8</td>
<td>14/8</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>0 1110 111</td>
<td>14</td>
<td>7</td>
<td>7/8</td>
<td>15/8</td>
<td>240</td>
</tr>
<tr>
<td>Largest norm.</td>
<td>0 1111 000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+∞</td>
</tr>
</tbody>
</table>
Tiny FP Example (4)

- Encoded values (nonnegative numbers only)

\[
0 \ 1101 \ XXX = (8/8 \sim 15/8) \cdot 2^6 \quad \quad 0 \ 1110 \ XXX = (8/8 \sim 15/8) \cdot 2^7
\]

\[
0 \ 0111 \ XXX = (8/8 \sim 15/8) \cdot 2^0 \quad \quad 0 \ 1000 \ XXX = (8/8 \sim 15/8) \cdot 2^1
\]

\[
0 \ 0000 \ XXX = (0/8 \sim 7/8) \cdot 2^{-6} \quad 0 \ 0001 \ XXX = (8/8 \sim 15/8) \cdot 2^{-6} \quad 0 \ 0011 \ XXX = (8/8 \sim 15/8) \cdot 2^{-4}
\]

(Without denormalization)

\[
0 \ 0000 \ XXX = (8/8 \sim 15/8) \cdot 2^{-7}
\]
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>000 ... 00</td>
<td>000 ... 00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Positive</td>
<td>000 ... 00</td>
<td>000 ... 01</td>
<td>Single: $2^{-23} \times 2^{-126} \approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td>denormalized</td>
<td></td>
<td></td>
<td>Double: $2^{-52} \times 2^{-1022} \approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>000 ... 00</td>
<td>111 ... 11</td>
<td>Single: $(1.0 - \varepsilon) \times 2^{-126} \approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double: $(1.0 - \varepsilon) \times 2^{-1022} \approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Positive</td>
<td>000 ... 01</td>
<td>000 ... 00</td>
<td>Single: 1.0×2^{-126}, Double: 1.0×2^{-1022}</td>
</tr>
<tr>
<td>Normalized</td>
<td></td>
<td></td>
<td>(Just larger than largest denormalized)</td>
</tr>
<tr>
<td>One</td>
<td>011 ... 11</td>
<td>000 ... 00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>111 ... 10</td>
<td>111 ... 11</td>
<td>Single: $(2.0 - \varepsilon) \times 2^{127} \approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double: $(2.0 - \varepsilon) \times 2^{1023} \approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Special Properties

- FP zero same as integer zero
 - All bits = 0

- Can (almost) use unsigned integer comparison
 - Must first compare sign bits
 - Must consider –0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. Infinity
Rounding

- For a given value x, finding the “closest” matching value x' that can be represented in the FP format
- IEEE 754 defines four rounding modes
 - Round-to-even avoids statistical bias by rounding upward or downward so that the least significant digit is even

<table>
<thead>
<tr>
<th>Rounding modes</th>
<th>1.40</th>
<th>1.60</th>
<th>1.50</th>
<th>2.50</th>
<th>-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-toward-zero</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Round-down ($-\infty$)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>Round-up ($+\infty$)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Round-to-even (default)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>or Round-to-nearest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Round-to-Even

- **Round up conditions**
 - $R = 1, S = 1 \rightarrow > 0.5$
 - $G = 1, R = 1, S = 0$
 \rightarrow Round to even

1. BBGRRX

- **Guard bit**: LSB of result
- **Round bit**: 1st bit removed
- **Sticky bit**: OR of remaining bits

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Up?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.0000000 (x2^7)</td>
<td>000</td>
<td>No</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>1.1010000 (x2^3)</td>
<td>100</td>
<td>No</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.0001000 (x2^4)</td>
<td>010</td>
<td>No</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.0011000 (x2^4)</td>
<td>110</td>
<td>Yes</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.0001010 (x2^7)</td>
<td>011</td>
<td>Yes</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.1111100 (x2^5)</td>
<td>111</td>
<td>Yes</td>
<td>10.000</td>
</tr>
</tbody>
</table>
FP Addition

- Adding two numbers:

 \[
 \begin{array}{c}
 \text{SSE2030: Introduction to Computer Systems | Fall 2016 | Jin-Soo Kim (jinsookim@skku.edu)}

 (Assume \(E_1 > E_2 \))

 \begin{itemize}
 \item Align binary points
 \begin{itemize}
 \item Shift right \(M_2 \) by \(E_1 - E_2 \)
 \end{itemize}
 \item Add significands
 \begin{itemize}
 \item Result: Sign \(s \), Significand \(M \), Exponent \(E = E_1 \)
 \end{itemize}
 \item Normalize result
 \begin{itemize}
 \item if \(M \geq 2 \), shift \(M \) right, increment \(E \)
 \item if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 \end{itemize}
 \item Check for overflow (\(E \) out of range?)
 \item Round \(M \) and renormalize if necessary
 \end{itemize}
 \end{array}
 \]

\[
\begin{align*}
 &\text{Add significands} \\
 \Rightarrow \quad &(-1)^{s_1} M_1 + (-1)^{s_2} M_2 \\
 \text{Normalize result} &
\end{align*}
\]
FP Multiplication

- **Multiplying two numbers:**

 - Obtain exact result
 - Sign $s = s_1 \land s_2$
 - Significand $M = M_1 \times M_2$
 - Exponent $E = E_1 + E_2$
 - The biggest chore is multiplying significands

 - **Normalize result**
 - if $(M \geq 2)$, shift M right, increment E
 - if $(M < 1)$, shift M left k positions, decrement E by k

 - Check for overflow (E out of range?)

 - Round M and renormalize if necessary
Floating Points in C

- C guarantees two levels
 - `float` (single precision) vs. `double` (double precision)

- Conversions
 - `double` or `float` → `int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN (Generally sets to Tmin)
 - `int` → `double`
 - Exact conversion, as long as int has ≤ 53 bit word size
 - `int` → `float`
 - Will round according to rounding mode
FP Example 1

```c
#include <stdio.h>

int main ()
{
    int n = 123456789;
    int nf, ng;
    float f;
    double g;

    f = (float) n;
    g = (double) n;
    nf = (int) f;
    ng = (int) g;
    printf ("nf=%d ng=%d\n", nf, ng);
}
```
FP Example 2

```c
#include <stdio.h>

int main ()
{
    double d;

    d = 1.0 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;

    printf ("d = %.20f\n", d);
}
```
FP Example 3

```c
#include <stdio.h>

int main ()
{
    float f1 = (3.14 + 1e20) - 1e20;
    float f2 = 3.14 + (1e20 - 1e20);

    printf ("f1 = %f, f2 = %f\n", f1, f2);
}
```
Ariane 5

- Ariane 5 tragedy (June 4, 1996)
 - Exploded 37 seconds after liftoff
 - Satellites worth $500 million

- Why?
 - Computed horizontal velocity as floating-point number
 - Converted to 16-bit integer
 - Careful analysis of Ariane 4 trajectory proved 16-bit is enough
 - Reused a module from 10-year-old software
 - Overflowed for Ariane 5
 - No precise specification for the software
Summary

- IEEE floating point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity / distributivity
 - Makes life difficult for compilers and serious numerical applications programmers