Manipulating Integers

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (char data type)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>~0x41</td>
<td>0xBE</td>
</tr>
<tr>
<td>~0x00</td>
<td>0xFF</td>
</tr>
<tr>
<td>0x69 & 0x55</td>
<td>0x41</td>
</tr>
<tr>
<td>0x69</td>
<td>0x55</td>
</tr>
<tr>
<td>0x69 ^ 0x55</td>
<td>0x3C</td>
</tr>
</tbody>
</table>
Logic Operations in C

▪ &&, ||, !
 • View 0 as “False”, anything nonzero as “True”
 • Always return 0 or 1
 • Early termination

▪ Examples (char data type)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>!0x41</td>
<td>0x00</td>
</tr>
<tr>
<td>!0x00</td>
<td>0x01</td>
</tr>
<tr>
<td>!!0x41</td>
<td>0x01</td>
</tr>
<tr>
<td>0x69 && 0x55</td>
<td>0x01</td>
</tr>
<tr>
<td>0x69</td>
<td></td>
</tr>
</tbody>
</table>

if (p && *p) ... // avoids null pointer access
Shift Operations

- **Left shift:** \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right shift:** \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift: fill with 0’s on left
 - Arithmetic shift: replicate MSB on right
 - Useful with two’s complement integer representation

- **Undefined if** \(y < 0 \) or \(y \geq \) word size

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Addition (1)

- Integer addition example
 - 4-bit integers u, v
 - Compute true sum
 - True sum requires one more bit ("carry")
 - Values increase linearly with u and v
 - Forms planar surface
Addition (2)

- Unsigned addition
 - Ignores carry output
 - Wraps around
 - If true sum $\geq 2^w$
 - At most once
Addition (3)

- Signed addition
 - Drop off MSB
 - Treat remaining bits as two’s complement integers

\[0 - 2^{w-1} + 2^{w-1} \]

Positive overflow

\[-2^{w-1} \]

Signed addition

\[-2^w \]

Negative overflow

\[+2^w \]

True Sum

Two's complement addition (4-bit word)

Negative overflow

Positive overflow
Addition (4)

- Signed addition in C
 - Ignores carry output
 - The low order w bits are identical to unsigned addition

Examples for $w = 3$

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>x + y</th>
<th>Truncated x + y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Unsigned</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4</td>
<td>-1</td>
<td>-5</td>
<td>3</td>
</tr>
<tr>
<td>Unsigned</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>-2</td>
</tr>
</tbody>
</table>
Multiplication (1)

- Ranges of \((x \times y)\)
 - Unsigned: up to \(2^w\) bits
 \[0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1\]
 - Two’s complement min: up to \(2^w - 1\) bits
 \[x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}\]
 - Two’s complement max: up to \(2^w\) bits (only for TMin\(^2\))
 \[x \times y \leq (-2^{w-1})^2 = 2^{2w-2}\]

- Maintaining exact results
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Multiplication (2)

- Unsigned multiplication in C
 - Ignores high order w bits
 - Implements modular arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Operands: w bits

True Product: 2^w bits

Discard w bits: w bits
Multiplication (3)

- **Signed multiplication in C**
 - Ignores high order w bits
 - The low-order w bits are identical to unsigned multiplication

Examples for $w = 3$

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>$x \cdot y$</th>
<th>Truncated $x \cdot y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4 [100]</td>
<td>7 [111]</td>
<td>28 [011100]</td>
<td>4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4 [100]</td>
<td>-1 [111]</td>
<td>4 [000100]</td>
<td>-4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3 [011]</td>
<td>3 [011]</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
</tbody>
</table>
Multiplication (4)

- **Power-of-2 multiply with shift**
 - $u \ll k$ gives $u \times 2^k$
 - e.g. $u \ll 3 = u \times 8$, $(u \ll 5) - (u \ll 3) = u \times 24$
 - Both signed and unsigned
 - Most machines shift and add faster than multiply

Operands: w bits

$$\begin{array}{c}
\text{True Product: } w+k \text{ bits} \\
\text{Discard } k \text{ bits: } w \text{ bits}
\end{array}$$

$$\begin{array}{c}
\text{UMult}_w(u, 2^k) \\
\text{TMult}_w(u, 2^k)
\end{array}$$

$$\begin{array}{c}
\text{True Product: } \begin{array}{c}
\cdot \cdot \cdot \\
0 \cdot \cdot \cdot 0 1 0 \cdot \cdot \cdot 0 0
\end{array}
\end{array}$$

$$\begin{array}{c}
\text{Discard } k \text{ bits: } \begin{array}{c}
\cdot \cdot \cdot
\end{array}
\end{array}$$

$$\begin{array}{c}
\text{UMult}_w(u, 2^k) \\
\text{TMult}_w(u, 2^k)
\end{array}$$
Multiplication (5)

- Compiled multiplication code
 - C compiler automatically generates shift/add code when multiplying by constant

```c
int mul12(int x)
{
    return x * 12;
}
```

Compiled Arithmetic Operations

- leal (%eax, %eax, 2), %eax

 \(t \leftarrow x + x \times 2 \)

- sall $2, %eax

 \(\text{return } t \ll 2 \)
Division (1)

- **Unsigned power-of-2 divide with shift**
 - $u >> k$ gives $\lfloor u / 2^k \rfloor$
 - Uses logical shift

Operands:

- u
- 2^k

Division:

- $u / 2^k$

Result:

- $\lfloor u / 2^k \rfloor$

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$x >> 1$</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>$x >> 4$</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>$x >> 8$</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Division (2)

- Compiled unsigned division code
 - Uses logical shift for unsigned
 - Logical shift written as >>> in Java

```c
unsigned udiv8(unsigned x)
{
    return x / 8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax ; return t >> 3
```
Division (3)

- Signed power-of-2 divide with shift
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift (rounds wrong direction if $x < 0$)

Operands:

\[
\begin{array}{c}
x \\
/ \quad 2^k \\
\end{array}
\]

Division:

\[
\begin{array}{c}
x / 2^k \\
\end{array}
\]

Result: RoundDown($x / 2^k$)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Division (4)

- Correct power-of-2 divide
 - Want $\left\lceil \frac{x}{2^k} \right\rceil$ (Round Toward 0) when $x < 0$
 - Compute as $\left\lceil \frac{x + 2^k - 1}{2^k} \right\rceil$
 - In C: $(x + (1 << k) - 1) >> k$
 - Biases dividend toward 0

- Case 1: No rounding
 - Biasing has no effect

Dividend: x

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+2^k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Divisor: $/ 2^k$

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Binary Point

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\left\lceil \frac{x}{2^k} \right\rceil$
Case 2: Rounding

- Biasing adds 1 to final result

Dividend: $x + 2^k - 1$

Divisor: 2^k

Incremented by 1

Binary Point

Incremented by 1
• Compiled signed division code
 • Uses arithmetic shift for signed
 • Arithmetic shift written as >> in Java

C Function

```c
int idiv8 (int x)
{
    return x / 8;
}
```

Explanation

```c
if (x < 0)
    x += 7;
return x >> 3;
```