Representing and Manipulating Floating Points

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
The Problem

- How to represent fractional values with finite number of bits?
 - 0.1
 - 0.612
 - 3.14159265358979323846264338327950288...

- Wide ranges of numbers
 - 1 Light-Year = 9,460,730,472,580.8 km
 - The radius of a hydrogen atom: 0.000000000025 m
Fractional Binary Numbers (I)

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers (2)

- **Examples:**

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-3/4</td>
<td>101.11<sub>2</sub></td>
</tr>
<tr>
<td>2-7/8</td>
<td>10.111<sub>2</sub></td>
</tr>
<tr>
<td>63/64</td>
<td>0.1111111<sub>2</sub></td>
</tr>
</tbody>
</table>

- **Observations**
 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of form 0.111111..₂ just below 1.0
 - \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^i} + \ldots \rightarrow 1.0\)
 - Use notation 1.0 − \(\varepsilon\)
Fractional Binary Numbers (3)

- Representable numbers
 - Can only exactly represent numbers of the form $x / 2^k$
 - Other numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.0101010101[01]...<sub>2</sub></td>
</tr>
<tr>
<td>1/5</td>
<td>0.001100110011[0011]...<sub>2</sub></td>
</tr>
<tr>
<td>1/10</td>
<td>0.0001100110011[0011]...<sub>2</sub></td>
</tr>
</tbody>
</table>
Fixed-Point Representation (1)

- **p.q** Fixed-point representation
 - Use the rightmost \(q \) bits of an integer as representing a fraction
 - Example: 17.14 fixed-point representation
 - 1 bit for sign bit
 - 17 bits for the integer part
 - 14 bits for the fractional part
 - An integer \(x \) represents the real number \(x / 2^{14} \)
 - Maximum value: \((2^{31} - 1) / 2^{14} \approx 131071.999 \)
Fixed-Point Representation (2)

- Properties
 - Convert n to fixed point: $n \times f$ (= $n << q$)
 - Add x and y: $x + y$
 - Subtract y from x: $x - y$
 - Add x and n: $x + n \times f$
 - Multiply x by n: $x \times n$
 - Divide x by n: x / n

x, y: fixed-point number
n: integer
$f = 1 << q$
Fixed-Point Representation (3)

▪ Pros
 • Simple
 • Can use integer arithmetic to manipulate
 • No floating-point hardware needed
 • Used in many low-cost embedded processors or DSPs (digital signal processors)

▪ Cons
 • Cannot represent wide ranges of numbers
Representing Floating Points

- **IEEE standard 754**
 - Established in 1985 as uniform standard for floating-point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - William Kahan, a primary architect of IEEE 754, won the Turing Award in 1989
 - Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard
FP Representation

- **Numerical form:** \(-L^s \times M \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand \(M\) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E\) weights value by power of two

- **Encoding**
 - MSB is sign bit \(s\)
 - \(exp\) field encodes \(E\) (Exponent)
 - \(frac\) field encodes \(M\) (Mantissa)
FP Precisions

- Single precision
 - 8 exp bits, 23 frac bits (32 bits total)

- Double precision
 - 11 exp bits, 52 frac bits (64 bits total)

- Extended precision
 - 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits (1 bit wasted)
Normalized Values

- Condition: \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \)

- Exponent coded as a biased value
 - \(E = \text{Exp} – \text{Bias} \)
 - \(\text{Exp} \): unsigned value denoted by \(\text{exp} \)
 - \(\text{Bias} \): Bias value (\(=2^{k-1}-1 \), where \(k \) is the number of \(\text{exp} \) bits)
 - Single precision (\(k=8 \)): 127 (\(\text{Exp}: 1..254, \text{E}: -126..127 \))
 - Double precision (\(k=11 \)): 1023 (\(\text{Exp}: 1..2046, \text{E}: -1022..1023 \))

- Significand coded with implied leading 1
 - \(M = 1.xxx\ldots x_2 \)
 - Minimum when \(\text{frac} = 000\ldots0 \) (\(M = 1.0 \))
 - Maximum when \(\text{frac} = 111\ldots1 \) (\(M = 2.0 – \varepsilon \))
 - Get extra leading bit for “free”
Normalized Values: Example

- float f = 2003.0;
 - \(2003_{10} = 11111010011_2 = 1.1111010011_2 \times 2^{10}\)

- Significand
 - \(M = 1.1111010011_2\)
 - frac = \(111101001100000000000000_2\)

- Exponent
 - \(E = 10\)
 - \(Exp = E + Bias = 10 + 127 = 137 = 10001001_2\)

<table>
<thead>
<tr>
<th>Hex:</th>
<th>4</th>
<th>4</th>
<th>F</th>
<th>A</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary:</td>
<td>0100</td>
<td>0100</td>
<td>1111</td>
<td>1010</td>
<td>0110</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>137:</td>
<td>100</td>
<td>0100</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003:</td>
<td>1111</td>
<td>1010</td>
<td>0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Denormalized Values

▪ Condition: $\exp = 000\ldots0$

▪ Value
 • Exponent value $E = 1 - \text{Bias}$
 • Significand value $M = 0.xxx\ldots x_2$ (no implied leading 1)

▪ Case 1: $\exp = 000\ldots0, \frac{\text{nc}}{\text{ac}} = 000\ldots0$
 • Represents value 0.0
 • Note that there are distinct values +0 and -0

▪ Case 2: $\exp = 000\ldots0, \frac{\text{nc}}{\text{ac}} \neq 000\ldots0$
 • Numbers very close to 0.0
 • “Gradual underflow”: possible numeric values are spaced evenly near 0.0
Special Values

- **Condition:** $\text{exp} = 111...1$
- **Case 1:** $\text{exp} = 111...1, \text{frac} = 000...0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - e.g. $1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty$
- **Case 2:** $\text{exp} = 111...1, \text{frac} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - e.g. $\sqrt{-1}, \infty - \infty, \infty * 0, ...$
Tiny FP Example (1)

- 8-bit floating point representation
 - The sign bit is in the most significant bit
 - The next four bits are the `exp`, with a bias of 7
 - The last three bits are the `frac`

- Same general form as IEEE format
 - Normalized, denormalized
 - Representation of 0, NaN, infinity
Tiny FP Example (2)

- **Values related to the exponent** *(Bias = 7)*

<table>
<thead>
<tr>
<th>Description</th>
<th>Exp</th>
<th>exp</th>
<th>E = Exp - Bias</th>
<th>2^E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denormalized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
<td>-6</td>
<td>1/64</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0001</td>
<td>-6</td>
<td>1/64</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0010</td>
<td>-5</td>
<td>1/32</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0011</td>
<td>-4</td>
<td>1/16</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0100</td>
<td>-3</td>
<td>1/8</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0101</td>
<td>-2</td>
<td>1/4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0110</td>
<td>-1</td>
<td>1/2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0111</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1001</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1010</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1011</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1100</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1101</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1110</td>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>Normalized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inf, NaN</td>
<td>15</td>
<td>1111</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Dynamic range

<table>
<thead>
<tr>
<th>Description</th>
<th>Bit representation</th>
<th>e</th>
<th>E</th>
<th>f</th>
<th>M</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0 0000 000</td>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Smallest pos.</td>
<td>0 0000 001</td>
<td>0</td>
<td>-6</td>
<td>1/8</td>
<td>1/8</td>
<td>1/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 010</td>
<td>0</td>
<td>-6</td>
<td>2/8</td>
<td>2/8</td>
<td>2/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 011</td>
<td>0</td>
<td>-6</td>
<td>3/8</td>
<td>3/8</td>
<td>3/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 110</td>
<td>0</td>
<td>-6</td>
<td>6/8</td>
<td>6/8</td>
<td>6/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 111</td>
<td>0</td>
<td>-6</td>
<td>7/8</td>
<td>7/8</td>
<td>7/512</td>
</tr>
<tr>
<td>Largest denorm.</td>
<td>0 0000 000</td>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>8/8</td>
<td>8/512</td>
</tr>
<tr>
<td>Smallest norm.</td>
<td>0 0001 000</td>
<td>1</td>
<td>-6</td>
<td>0</td>
<td>8/8</td>
<td>8/512</td>
</tr>
<tr>
<td></td>
<td>0 0001 001</td>
<td>1</td>
<td>-6</td>
<td>1/8</td>
<td>9/8</td>
<td>9/512</td>
</tr>
<tr>
<td></td>
<td>0 0110 110</td>
<td>6</td>
<td>-1</td>
<td>6/8</td>
<td>14/8</td>
<td>14/16</td>
</tr>
<tr>
<td></td>
<td>0 0110 111</td>
<td>6</td>
<td>-1</td>
<td>7/8</td>
<td>15/8</td>
<td>15/16</td>
</tr>
<tr>
<td></td>
<td>0 0111 000</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>8/8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0 0111 001</td>
<td>7</td>
<td>0</td>
<td>1/8</td>
<td>9/8</td>
<td>9/8</td>
</tr>
<tr>
<td></td>
<td>0 0111 010</td>
<td>7</td>
<td>0</td>
<td>2/8</td>
<td>10/8</td>
<td>10/8</td>
</tr>
<tr>
<td></td>
<td>0 1110 110</td>
<td>14</td>
<td>7</td>
<td>6/8</td>
<td>14/8</td>
<td>224</td>
</tr>
<tr>
<td>Largest norm.</td>
<td>0 1110 111</td>
<td>14</td>
<td>7</td>
<td>7/8</td>
<td>15/8</td>
<td>240</td>
</tr>
<tr>
<td>Infinity</td>
<td>0 1111 000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+∞</td>
</tr>
</tbody>
</table>
Tiny FP Example (4)

- Encoded values (nonnegative numbers only)

0 1110 XXX = (8/8 ~ 15/8) * 2^6
0 1111 XXX = (8/8 ~ 15/8) * 2^7
0 0111 XXX = (8/8 ~ 15/8) * 2^0
0 1000 XXX = (8/8 ~ 15/8) * 2^1
0 0011 XXX = (8/8 ~ 15/8) * 2^-4
0 0000 XXX = (0/8 ~ 7/8) * 2^-6

(Without denormalization)

0 0000 XXX = (8/8 ~ 15/8) * 2^-7
Interesting Numbers

Description

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>000 ... 00</td>
<td>000 ... 00</td>
<td>0.0</td>
</tr>
</tbody>
</table>
| Smallest Positive denormalized| 000 ... 00| 000 ... 01| Single: \(2^{-23} \times 2^{-126} \approx 1.4 \times 10^{-45}\)
Double: \(2^{-52} \times 2^{-1022} \approx 4.9 \times 10^{-324}\) |
| Largest Denormalized | 000 ... 00| 111 ... 11| Single: \((1.0 - \epsilon) \times 2^{-126} \approx 1.18 \times 10^{-38}\)
Double: \((1.0 - \epsilon) \times 2^{-1022} \approx 2.2 \times 10^{-308}\) |
| Smallest Positive Normalized | 000 ... 01| 000 ... 00| Single: \(1.0 \times 2^{-126}\), Double: \(1.0 \times 2^{-1022}\)
(Just larger than largest denormalized) |
| One | 011 ... 11| 000 ... 00| 1.0 |
| Largest Normalized | 111 ... 10| 111 ... 11| Single: \((2.0 - \epsilon) \times 2^{127} \approx 3.4 \times 10^{38}\)
Double: \((2.0 - \epsilon) \times 2^{1023} \approx 1.8 \times 10^{308}\) |
Special Properties

- FP zero same as integer zero
 - All bits = 0

- Can (almost) use unsigned integer comparison
 - Must first compare sign bits
 - Must consider −0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. Infinity
Rounding

- For a given value x, finding the “closest” matching value x' that can be represented in the FP format
- IEEE 754 defines four rounding modes
 - Round-to-even avoids statistical bias by rounding upward or downward so that the least significant digit is even

<table>
<thead>
<tr>
<th>Rounding modes</th>
<th>1.40</th>
<th>1.60</th>
<th>1.50</th>
<th>2.50</th>
<th>-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-toward-zero</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Round-down ($-\infty$)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>Round-up ($+\infty$)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Round-to-even (default) or Round-to-nearest</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
</tr>
</tbody>
</table>
Round-to-Even

- Round up conditions
 - \(R = 1, S = 1 \rightarrow > 0.5 \)
 - \(G = 1, R = 1, S = 0 \) → Round to even

1. BBGRXXX

Guard bit: LSB of result
Round bit: 1st bit removed
Sticky bit: OR of remaining bits

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Up?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.00000000 ((\times2^7))</td>
<td>000</td>
<td>No</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>1.10100000 ((\times2^3))</td>
<td>100</td>
<td>No</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.00010000 ((\times2^4))</td>
<td>010</td>
<td>No</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.00110000 ((\times2^4))</td>
<td>110</td>
<td>Yes</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.00010100 ((\times2^7))</td>
<td>011</td>
<td>Yes</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.11111000 ((\times2^5))</td>
<td>111</td>
<td>Yes</td>
<td>10.000</td>
</tr>
</tbody>
</table>
FP Addition

- **Adding two numbers:**

 (Assume $E_1 > E_2$)

 - **Align binary points**
 - Shift right M_2 by $E_1 - E_2$

 - **Add significands**
 - Result: Sign s, Significand M, Exponent E (= E_1)

 - **Normalize result**
 - if $(M \geq 2)$, shift M right, increment E
 - if $(M < 1)$, shift M left k positions, decrement E by k

 - **Check for overflow (E out of range?)**

 - **Round M and renormalize if necessary**
FP Multiplication

- Multiplying two numbers:

 \[s1 \ E1 \ M1 \times s2 \ E2 \ M2 \]

 - Obtain exact result
 - Sign \(s = s1 \land s2 \)
 - Significand \(M = M1 \times M2 \)
 - Exponent \(E = E1 + E2 \)
 - The biggest chore is multiplying significands

 - Normalize result
 - if \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)

 - Check for overflow (\(E \) out of range?)

 - Round \(M \) and renormalize if necessary
Floating Points in C

- C guarantees two levels
 - `float` (single precision) vs. `double` (double precision)

- Conversions
 - `double` or `float` → `int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN (Generally sets to Tmin)
 - `int` → `double`
 - Exact conversion, as long as int has ≤ 53 bit word size
 - `int` → `float`
 - Will round according to rounding mode
FP Example 1

```c
#include <stdio.h>

int main ()
{
    int n = 123456789;
    int nf, ng;
    float f;
    double g;

    f = (float) n;
    g = (double) n;
    nf = (int) f;
    ng = (int) g;
    printf ("nf=%d ng=%d\n", nf, ng);
}
```
FP Example 2

```c
#include <stdio.h>

int main ()
{
    double  d;

    d = 1.0 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 
    + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;

    printf ("d = %.20f\n", d);
}
```
FP Example 3

```c
#include <stdio.h>

int main ()
{
    float f1 = (3.14 + 1e20) - 1e20;
    float f2 = 3.14 + (1e20 - 1e20);

    printf ("f1 = %f, f2 = %f\n", f1, f2);
}
```
Ariane 5

- Ariane 5 tragedy (June 4, 1996)
 - Exploded 37 seconds after liftoff
 - Satellites worth $500 million

- Why?
 - Computed horizontal velocity as floating-point number
 - Converted to 16-bit integer
 - Careful analysis of Ariane 4 trajectory proved 16-bit is enough
 - Reused a module from 10-year-old software
 - Overflowed for Ariane 5
 - No precise specification for the software
Summary

- IEEE floating point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity / distributivity
 - Makes life difficult for compilers and serious numerical applications programmers