
SEE2030: Introduction to Computer Systems (Fall 2017)

Programming Assignment #2:

Implementing Arithmetic Operations using the Tiny FP (8-bit floating point) representation

Due: October 15th (Sunday), 11:59PM

1. Introduction

The purpose of this assignment is to implement several arithmetic operations using the simplified

8-bit floating-point type.

2. Problem specification

2.1. Overview

tinyfp is a simplified 8-bit floating point representation which follows the IEEE 754 standard for

floating-point arithmetic. The overall structure of the tinyfp representation is shown below. The

MSB (Most Significant Bit) is used as a sign bit (s). The next four bits are used for exponents (exp)

with a bias value of 7. The last three bits are used for the fractional part (frac).

In C, the new type tinyfp can be defined as follows.

Your task is to implement the following four C functions that operate using the tinyfp data type.

typedef unsigned char tinyfp;

tinyfp add(tinyfp tf1, tinyfp tf2);

tinyfp mul(tinyfp tf1, tinyfp tf2);

int gt(tinyfp tf1, tinyfp tf2);

int eq(tinyfp tf1, tinyfp tf2);

2.2. Restrictions

You must not use any float-type or double-type variables for implementing functions introduced

above. Also, you should not use the conversion functions such as tinyfp2float() implemented

in PA#1. You should implement these functions using 32-bit integer arithmetic and logical

operations.

2.3. Implementation details

2.2.0. Common

- We do not differentiate between +NaN and -NaN. They are all treated as NaN.

 e.g. (0 1111 101)tinyfp == (1 1111 110)tinyfp == NaN

- Also note that +0 and -0 are same by definition. The all mean the value zero.

2.2.1. tinyfp add(tinyfp tf1, tinyfp tf2)

- If the result exceeds the range of the tinyfp representation, the result will be infinity (+∞

or -∞ depending on the sign).

- Use the round-to-even mode when necessary.

- For the special cases which involve infinity and NaN, add() should return the value specified

in Table 1.

Table 1. Return values of add() for special values

tf1 tf2 Return value

+∞ Normalized/Denormalized +∞

-∞ Normalized/Denormalized -∞

Normalized/Denormalized +∞ +∞

Normalized/Denormalized -∞ -∞

+∞ +∞ +∞

-∞ -∞ -∞

+∞ -∞ NaN

-∞ +∞ NaN

NaN Anything NaN

Anything NaN NaN

2.2.2. tinyfp mul(tinyfp tf1, tinyfp tf2)

- If the result exceeds the range of tinyfp representation, the result will be infinity (+∞ or

-∞ depending on the sign).

- Use the round-to-even mode when necessary.

- For the special cases which involve infinity and NaN, mul() should return the value specified

in Table 2.

Table 2. Return value of mul() for special values

tf1 tf2 Return value

±∞ Normalized/Denormalized
±∞ (depending on the

sign of tf1 and tf2)

Normalized/Denormalized ±∞
±∞ (depending on the

sign of tf1 and tf2)

±∞ ±0 NaN

±0 ±∞ NaN

+∞ +∞ +∞

-∞ -∞ +∞

+∞ -∞ -∞

-∞ +∞ -∞

NaN Anything NaN

Anything NaN NaN

2.2.3. int gt(tinyfp tf1, tinyfp tf2)

- Return 1 if tf1 is greater than tf2. Otherwise, return 0.

- For the special cases which involve infinity and NaN, gt() should return the value specified

in Table 3.

Table 3. Return value of gt() for special values

tf1 tf2 Return value

+∞ Normalized/Denormalized 1

Normalized/Denormalized +∞ 0

-∞ Normalized/Denormalized 0

Normalized/Denormalized -∞ 1

+∞ +∞ 0

+∞ -∞ 1

-∞ +∞ 0

-∞ -∞ 0

+0 +0 0

+0 -0 0

-0 +0 0

-0 -0 0

Anything NaN 0

NaN Anything 0

2.2.4. int eq(tinyfp tf1, tinyfp tf2)

- Return 1 if tf1 and tf2 are equal. Otherwise, return 0.

- For the special cases which involve infinity and NaN, eq() should return the value specified

in Table 4.

Table 4. Return value of eq() for special values

tf1 tf2 Return value

+∞ +∞ 1

-∞ -∞ 1

+∞ -∞ 0

-∞ +∞ 0

+0 +0 1

+0 -0 1

-0 +0 1

-0 -0 1

NaN Anything 0

Anything NaN 0

3. Example

The skeleton code is available in the course homepage (http://csl.skku.edu/SSE2030F17/Assignment)

The results of some sample runs are as follows.

4. Hand in instructions

– Submit only the pa2.c file to the submission site.

http://csl.skku.edu/SSE2030F17/Assignment

5. Logistics

– You will work on this assignment alone.

– We will also measure the speed of your program. The correct solutions with fast running

time will have the bonus.

– Only the assignments submitted before the deadline will receive the full credit. 25% of the

credit will be deducted for every single day delay.

 You can use up to 5 slip days

– Any attempt to copy others’ work will result in heavy penalty (for both the copier and the

originator). Don’t take a risk.

Good luck!

TA: Kisik Jeong (kisik.jeong@csl.skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

