Modern Microprocessors

- More than just GHz

<table>
<thead>
<tr>
<th>CPU</th>
<th>Clock Speed</th>
<th>SPECint2000</th>
<th>SPECfp2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athlon 64 FX-55</td>
<td>2.6GHz</td>
<td>1854</td>
<td>1782</td>
</tr>
<tr>
<td>Pentium 4 Extreme Edition</td>
<td>3.46GHz</td>
<td>1772</td>
<td>1724</td>
</tr>
<tr>
<td>Pentium 4 Prescott</td>
<td>3.8GHz</td>
<td>1671</td>
<td>1842</td>
</tr>
<tr>
<td>Opteron 150</td>
<td>2.4GHz</td>
<td>1655</td>
<td>1644</td>
</tr>
<tr>
<td>Itanium 2 9MB</td>
<td>1.6GHz</td>
<td>1590</td>
<td>2712</td>
</tr>
<tr>
<td>Pentium M 755</td>
<td>2.0GHz</td>
<td>1541</td>
<td>1088</td>
</tr>
<tr>
<td>POWER5</td>
<td>1.9GHz</td>
<td>1452</td>
<td>2702</td>
</tr>
<tr>
<td>SPARC64 V</td>
<td>1.89GHz</td>
<td>1345</td>
<td>1803</td>
</tr>
<tr>
<td>Athlon 64 3200+</td>
<td>2.2GHz</td>
<td>1080</td>
<td>1250</td>
</tr>
<tr>
<td>Alpha 21264C</td>
<td>1.25GHz</td>
<td>928</td>
<td>1019</td>
</tr>
</tbody>
</table>
Pipelining

- Sequential execution

- Pipelining (RISC)
Superpipelining

- Superpipelining
 - Subdivide each pipeline stage
 - Higher clock speed
Superscalar

- **Superscalar**
 - The execution stage has a bunch of different functional units
 - Execute multiple instructions in parallel
 - Pentium: 2-way superscalar
Superpipelined Superscalar

- Superpipelining + Superscalar
 - 2-way: MIPS R5000
 - 3-way: PowerPC G3/G4, Pentium Pro/II/III/M/4, Athlon
 - 4-way: UltraSparc, MIPS R10000, PowerPC G4e, Alpha 21164 & 21264, Core 2 Duo
 - 5-issue: PowerPC G5
Tackling Instruction Dependencies

• Branch prediction + speculative execution
 – Mispredict penalty: 10 – 15 cycles in Pentium Pro/II/III

• Instruction scheduling
 – In-order execution + compiler optimization
 • Rearrange the instructions at compile time
 • Compiler can see further down the program than the hardware
 • SuperSparc, HyperSparc, UltraSparc, Alpha 21064 & 21164
 – Out-of-order execution
 • Reorder instruction execution sequence in hardware at run time
 • Register renaming reduces the dependency further
 • MIPS R10000, Alpha 21264, POWER/PowerPC, Pentium Pro, Pentium 4, Core 2 Duo, Core i7, …
Intel Pentium Pro

• In-order front-end
 – Multiple branch prediction
 – Micro-operations
 – Register renaming

• Out-of-order execution core
 – 3-way superscalar
 – Multiple execution units
 – Dataflow analysis
 – Speculative execution

• In-order retirement
 – Precise faulting semantics
P6 Microarchitecture

[Diagram of P6 Microarchitecture]

- Instr TLB (32 entry)
- 8K Instruction Cache
- Branch Target Buffer
- Instruction Fetch Unit
- IN-ORDER SECTION
 - Simple Decoder
 - General Decoder
 - Uop Sequencer
- Reorder Buffer (40 entries)
 - RAT
 - RRF
- Reservation Station (20 entries)
- Store Data
- Store Addr Unit
- Load Addr Unit
- Integer ALU
- FP Unit
- Integer Unit
- Memory Reorder Buffer (MOB)
- OUT-OF-ORDER EXECUTION ENGINE
 - Data TLB (64 entry)
- 8K Dual-Ported Data Cache
 - System Bus Interface
 - L2 Cache Interface

36 addr
64 data
64 data
Skylake Microarchitecture
Hyper-Threading

• Simultaneous multithreading technology (SMT)
 – Utilizes thread-level parallelism
 – Fill pipelines with the instructions from multiple threads running at the same time
 – An SMT processor appears as if it were multiple independent processors
 – Uses processor resources more effectively
 – Cost: <5% in added die area
Multi-core

• Put two or more processor cores onto a single chip
 – Previously called CMP (Chip Multiprocessor)

• Examples
 – AMD dual-core Athlon 64 X2: dual-core (May 2005)
 – Intel Core Duo, Core 2 Duo: dual-core
 – Sun UltraSparc T1: eight-core, 32 threads (Nov. 2005)
 – Intel Xeon X7460: six-core (Sep. 2008)
 – Intel Xeon E7-8890 v4: 24-core (Jun. 2016)
CPU Trends

Stuttering

- Transistors per chip, ‘000
- Clock speed (max), MHz
- Thermal design power*, w

Chip introduction dates, selected

Transistors bought per $, m

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist

*Maximum safe power consumption
Why Multi-core?

• Memory wall
 – CPU 55%/year, Memory 10%/year (1986 – 2000)
 – Caches show diminishing returns

• ILP(Instruction Level Parallelism) wall
 – Control dependency
 – Data dependency

• Power wall
 – Dynamic power \propto Frequency3
 – Static power \propto Frequency
 – Total power \propto The number of cores
Single-core vs. Multi-core

Source: Intel

Single-Core

- **Performance:** 1.00x
- **Power:**
- Raise Clock (20%)

Dual-Core

- **Performance:**
 - Raise Clock (20%): 1.73x
 - Lower Clock (20%): 0.87x
- **Power:**
 - 0.51x

More MIPS/watt

Source: Intel