Representing and Manipulating Floating Points

Jinkyu Jeong (jinkyu@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
The Problem

• How to represent fractional values with finite number of bits?
 – 0.1
 – 0.612
 – 3.14159265358979323846264338327950288...

• Wide ranges of numbers
 – 1 Light-Year = 9,460,730,472,580.8 km
 – The radius of a hydrogen atom: 0.0000000000025 m
Fractional Binary Numbers (1)

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{k=-j}^{i} b_k \cdot 2^k \)
Fractional Binary Numbers (2)

• Examples:

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111₁₂</td>
</tr>
</tbody>
</table>

• Observations
 – Divide by 2 by shifting right
 – Multiply by 2 by shifting left
 – Numbers of form 0.111111₁₂ just below 1.0
 • $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^i} + \ldots \rightarrow 1.0$
 • Use notation $1.0 - \varepsilon$
Fractional Binary Numbers (3)

• Representable numbers
 – Can only exactly represent numbers of the form $x / 2^k$
 – Other numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.0101010101[01]…₂</td>
</tr>
<tr>
<td>1/5</td>
<td>0.001100110011[0011]…₂</td>
</tr>
<tr>
<td>1/10</td>
<td>0.0001100110011[0011]…₂</td>
</tr>
</tbody>
</table>
Fixed-Point Representation (1)

• \(p.q\) Fixed-point representation
 – Use the rightmost \(q\) bits of an integer as representing a fraction
 – Example: 17.14 fixed-point representation
 • 1 bit for sign bit
 • 17 bits for the integer part
 • 14 bits for the fractional part
 • An integer \(x\) represents the real number \(x / 2^{14}\)
 • Maximum value: \((2^{31} - 1) / 2^{14} \approx 131071.999\)
Fixed-Point Representation (2)

• Properties
 – Convert n to fixed point: $n \times f$ ($= n \ll q$)
 – Add x and y: $x + y$
 – Subtract y from x: $x - y$
 – Add x and n: $x + n \times f$
 – Multiply x by n: $x \times n$
 – Divide x by n: x / n

x, y: fixed-point number
n: integer
$f = 1 \ll q$
Fixed-Point Representation (3)

• Pros
 – Simple
 – Can use integer arithmetic to manipulate
 – No floating-point hardware needed
 – Used in many low-cost embedded processors or DSPs (digital signal processors)

• Cons
 – Cannot represent wide ranges of numbers
Representing Floating Points

• IEEE standard 754
 – Established in 1985 as uniform standard for floating-point arithmetic
 • Before that, many idiosyncratic formats
 – Supported by all major CPUs
 – William Kahan, a primary architect of IEEE 754, won the Turing Award in 1989
 – Driven by numerical concerns
 • Nice standards for rounding, overflow, underflow
 • Hard to make go fast
 • Numerical analysts predominated over hardware types in defining standard
FP Representation

• Numerical form: \(-1^s \times M \times 2^E\)
 – Sign bit \(s\) determines whether number is negative or positive
 – Significand \(M\) normally a fractional value in range \([1.0, 2.0)\)
 – Exponent \(E\) weights value by power of two

• Encoding

\[
\begin{array}{c|c|c}
 s & exp & frac \\
\end{array}
\]

 – MSB is sign bit \(s\)
 – \(exp\) field encodes \(E\) (Exponent)
 – \(frac\) field encodes \(M\) (Mantissa)
FP Precisions

- Single precision
 - 8 exp bits, 23 frac bits (32 bits total)

- Double precision
 - 11 exp bits, 52 frac bits (64 bits total)

- Extended precision
 - 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits (1 bit wasted)
Normalized Values

- Condition: \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \)

- Exponent coded as a biased value
 - \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value denoted by \(\text{exp} \)
 - \(\text{Bias} \): Bias value \((=2^{k-1}-1\), where \(k \) is the number of \(\text{exp} \) bits\)
 - Single precision \((k=8)\): \(127 \) (\(\text{Exp} \): \(1..254\), \(E \): \(-126..127\))
 - Double precision \((k=11)\): \(1023 \) (\(\text{Exp} \): \(1..2046\), \(E \): \(-1022..1023\))

- Significand coded with implied leading 1
 - \(M = 1.xxx\ldots x_2 \)
 - Minimum when \(\text{frac} = 000\ldots0 \) \((M = 1.0)\)
 - Maximum when \(\text{frac} = 111\ldots1 \) \((M = 2.0 - \varepsilon)\)
 - Get extra leading bit for “free”
Normalized Values: Example

• float f = 2003.0;
 – 2003_{10} = 111110100112 = 1.11110100112 \times 2^{10}

• Significand
 – M = 1.11110100112
 – frac = 11110100110000000000000002

• Exponent
 – E = 10
 – Exp = E + Bias = 10 + 127 = 137 = 100010012

<table>
<thead>
<tr>
<th>Hex:</th>
<th>4</th>
<th>4</th>
<th>F</th>
<th>A</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary:</td>
<td>0100</td>
<td>0100</td>
<td>1111</td>
<td>1010</td>
<td>0110</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>137:</td>
<td>100 0100 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003:</td>
<td>1111 1010 0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Denormalized Values

• Condition: $exp = 000\ldots0$

• Value
 – Exponent value $E = 1 - Bias$
 – Significand value $M = 0.xxx\ldots x_2$ (no implied leading 1)

• Case 1: $exp = 000\ldots0, frac = 000\ldots0$
 – Represents value 0.0
 – Note that there are distinct values +0 and -0

• Case 2: $exp = 000\ldots0, frac \neq 000\ldots0$
 – Numbers very close to 0.0
 – “Gradual underflow”: possible numeric values are spaced evenly near 0.0
Special Values

• Condition: exp = 111...1

• Case 1: exp = 111...1, frac = 000...0
 – Represents value ∞ (infinity)
 – Operation that overflows
 – Both positive and negative
 – e.g. $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

• Case 2: exp = 111...1, frac ≠ 000...0
 – Not-a-Number (NaN)
 – Represents case when no numeric value can be determined
 – e.g. $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$, ...
Tiny FP Example (1)

- 8-bit floating point representation
 - The sign bit is in the most significant bit
 - The next four bits are the exp, with a bias of 7
 - The last three bits are the frac

- Same general form as IEEE format
 - Normalized, denormalized
 - Representation of 0, NaN, infinity
Tiny FP Example (2)

• Values related to the exponent ($\textbf{Bias} = 7$)

<table>
<thead>
<tr>
<th>Description</th>
<th>Exp</th>
<th>exp</th>
<th>$E = \text{Exp} - \text{Bias}$</th>
<th>2^E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denormalized</td>
<td>0</td>
<td>0000</td>
<td>-6</td>
<td>1/64</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0001</td>
<td>-6</td>
<td>1/64</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0010</td>
<td>-5</td>
<td>1/32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0011</td>
<td>-4</td>
<td>1/16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0100</td>
<td>-3</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0101</td>
<td>-2</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0110</td>
<td>-1</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0111</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1001</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1010</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1011</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1100</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1101</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1110</td>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>inf, NaN</td>
<td>15</td>
<td>1111</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tiny FP Example (3)

Dynamic range

<table>
<thead>
<tr>
<th>Description</th>
<th>Bit representation</th>
<th>e</th>
<th>E</th>
<th>f</th>
<th>M</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0 0000 000</td>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Smallest pos.</td>
<td>0 0000 001</td>
<td>0</td>
<td>-6</td>
<td>1/8</td>
<td>1/8</td>
<td>1/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 010</td>
<td>0</td>
<td>-6</td>
<td>2/8</td>
<td>2/8</td>
<td>2/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 011</td>
<td>0</td>
<td>-6</td>
<td>3/8</td>
<td>3/8</td>
<td>3/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 110</td>
<td>0</td>
<td>-6</td>
<td>6/8</td>
<td>6/8</td>
<td>6/512</td>
</tr>
<tr>
<td></td>
<td>0 0000 111</td>
<td>0</td>
<td>-6</td>
<td>7/8</td>
<td>7/8</td>
<td>7/512</td>
</tr>
<tr>
<td>Largest denorm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smallest norm.</td>
<td>0 0001 000</td>
<td>1</td>
<td>-6</td>
<td>0</td>
<td>8/8</td>
<td>8/512</td>
</tr>
<tr>
<td></td>
<td>0 0001 001</td>
<td>1</td>
<td>-6</td>
<td>1/8</td>
<td>9/8</td>
<td>9/512</td>
</tr>
<tr>
<td></td>
<td>0 0110 110</td>
<td>6</td>
<td>-1</td>
<td>6/8</td>
<td>14/8</td>
<td>14/16</td>
</tr>
<tr>
<td></td>
<td>0 0110 111</td>
<td>6</td>
<td>-1</td>
<td>7/8</td>
<td>15/8</td>
<td>15/16</td>
</tr>
<tr>
<td></td>
<td>0 0111 000</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>8/8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0 0111 001</td>
<td>7</td>
<td>0</td>
<td>1/8</td>
<td>9/8</td>
<td>9/8</td>
</tr>
<tr>
<td></td>
<td>0 0111 010</td>
<td>7</td>
<td>0</td>
<td>2/8</td>
<td>10/8</td>
<td>10/8</td>
</tr>
<tr>
<td>One</td>
<td>0 0111 011</td>
<td>14</td>
<td>7</td>
<td>6/8</td>
<td>14/8</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>0 1110 110</td>
<td>14</td>
<td>7</td>
<td>7/8</td>
<td>15/8</td>
<td>240</td>
</tr>
<tr>
<td>Largest norm.</td>
<td>0 1110 111</td>
<td>14</td>
<td>7</td>
<td>7/8</td>
<td>15/8</td>
<td>240</td>
</tr>
<tr>
<td>Infinity</td>
<td>0 1111 000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+∞</td>
</tr>
</tbody>
</table>
Tiny FP Example (4)

- Encoded values (nonnegative numbers only)

0 1101 XXX = (8/8 ~ 15/8) * 2^6
0 1110 XXX = (8/8 ~ 15/8) * 2^7

0 0111 XXX = (8/8 ~ 15/8) * 2^0
0 1000 XXX = (8/8 ~ 15/8) * 2^1

0 0000 XXX = (0/8 ~ 1/8) * 2^-6
0 0001 XXX = (8/8 ~ 15/8) * 2^-6
0 0011 XXX = (8/8 ~ 15/8) * 2^-4

(Without denormalization)

0 0000 XXX = (8/8 ~ 15/8) * 2^-7
Interesting Numbers

The table below summarizes the properties of various types of floating-point numbers, including zero, smallest positive denormalized, largest denormalized, smallest positive normalized, one, and largest normalized.

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>000 ... 00</td>
<td>000 ... 00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Positive denormalized</td>
<td>000 ... 00</td>
<td>000 ... 01</td>
<td>Single: $2^{-23} \times 2^{-126} \approx 1.4 \times 10^{-45}$ Double: $2^{-52} \times 2^{-1022} \approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>000 ... 00</td>
<td>111 ... 11</td>
<td>Single: $(1.0 - \varepsilon) \times 2^{-126} \approx 1.18 \times 10^{-38}$ Double: $(1.0 - \varepsilon) \times 2^{-1022} \approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Positive Normalized</td>
<td>000 ... 01</td>
<td>000 ... 00</td>
<td>Single: 1.0×2^{-126}, Double: 1.0×2^{-1022} (Just larger than largest denormalized)</td>
</tr>
<tr>
<td>One</td>
<td>011 ... 11</td>
<td>000 ... 00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>111 ... 10</td>
<td>111 ... 11</td>
<td>Single: $(2.0 - \varepsilon) \times 2^{127} \approx 3.4 \times 10^{38}$ Double: $(2.0 - \varepsilon) \times 2^{1023} \approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Special Properties

• FP zero same as integer zero
 – All bits = 0

• Can (almost) use unsigned integer comparison
 – Must first compare sign bits
 – Must consider –0 = 0
 – NaNs problematic
 • Will be greater than any other values
 – Otherwise OK
 • Denormalized vs. normalized
 • Normalized vs. Infinity
Rounding

- For a given value x, finding the “closest” matching value x' that can be represented in the FP format
- IEEE 754 defines four rounding modes
 - Round-to-even avoids statistical bias by rounding upward or downward so that the least significant digit is even

<table>
<thead>
<tr>
<th>Rounding modes</th>
<th>1.40</th>
<th>1.60</th>
<th>1.50</th>
<th>2.50</th>
<th>$–1.50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-toward-zero</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$–1$</td>
</tr>
<tr>
<td>Round-down ($–\infty$)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$–2$</td>
</tr>
<tr>
<td>Round-up ($+\infty$)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>$–1$</td>
</tr>
<tr>
<td>Round-to-even (default) or Round-to-nearest</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>$–2$</td>
</tr>
</tbody>
</table>
Round-to-Even

- **Round up conditions**
 - \(R = 1, S = 1 \rightarrow > 0.5 \)
 - \(G = 1, R = 1, S = 0 \)
 \(\rightarrow \) Round to even

1. BBGRXXX

- **Guard** bit: LSB of result
- **Round** bit: 1st bit removed
- **Sticky** bit: OR of remaining bits

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Up?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.00000000 (x2^7)</td>
<td>000</td>
<td>No</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>1.10100000 (x2^3)</td>
<td>100</td>
<td>No</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.00010000 (x2^4)</td>
<td>010</td>
<td>No</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.00110000 (x2^4)</td>
<td>110</td>
<td>Yes</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.00010100 (x2^7)</td>
<td>011</td>
<td>Yes</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.11111000 (x2^5)</td>
<td>111</td>
<td>Yes</td>
<td>10.000</td>
</tr>
</tbody>
</table>
FP Addition

- Adding two numbers: \(\begin{array}{c|c|c} s_1 & E_1 & M_1 \\ \hline s_2 & E_2 & M_2 \end{array} \)

 (Assume \(E_1 > E_2 \))
 - Align binary points
 - Shift right \(M_2 \) by \(E_1 - E_2 \)
 - Add significands
 - Result: Sign \(s \), Significand \(M \), Exponent \(E = E_1 \)
 - Normalize result
 - if \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Check for overflow (\(E \) out of range?)
 - Round \(M \) and renormalize if necessary
FP Multiplication

• Multiplying two numbers: \[s_1 E_1 M_1 \times s_2 E_2 M_2 \]

 – Obtain exact result
 • Sign \(s = s_1 \wedge s_2 \)
 • Significand \(M = M_1 \times M_2 \)
 • Exponent \(E = E_1 + E_2 \)
 • The biggest chore is multiplying significands

 – Normalize result
 • if \((M \geq 2) \), shift \(M \) right, increment \(E \)
 • if \((M < 1) \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)

 – Check for overflow (\(E \) out of range?)

 – Round \(M \) and renormalize if necessary
Floating Points in C

• C guarantees two levels
 – float (single precision) vs. double (double precision)

• Conversions
 – double or float → int
 • Truncates fractional part
 • Like rounding toward zero
 • Not defined when out of range or NaN (Generally sets to Tmin)
 – int → double
 • Exact conversion, as long as int has ≤ 53 bit word size
 – int → float
 • Will round according to rounding mode
#include <stdio.h>

int main ()
{
 int n = 123456789;
 int nf, ng;
 float f;
 double g;

 f = (float) n;
 g = (double) n;
 nf = (int) f;
 ng = (int) g;
 printf ("nf=%d ng=%d\n", nf, ng);
}

FP Example 2

```c
#include <stdio.h>

int main ()
{
    double d;

    d = 1.0 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1
        + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;

    printf ("d = %.20f\n", d);
}
```
FP Example 3

```c
#include <stdio.h>

int main ()
{
    float f1 = (3.14 + 1e20) - 1e20;
    float f2 = 3.14 + (1e20 - 1e20);

    printf ("f1 = %f, f2 = %f\n", f1, f2);
}
```
Ariane 5

- Ariane 5 tragedy (June 4, 1996)
 - Exploded 37 seconds after liftoff
 - Satellites worth $500 million

- Why?
 - Computed horizontal velocity as floating-point number
 - Converted to 16-bit integer
 - Careful analysis of Ariane 4 trajectory proved 16-bit is enough
 - Reused a module from 10-year-old software
 - Overflowed for Ariane 5
 - No precise specification for the software
Summary

• IEEE floating point has clear mathematical properties

• Represents numbers of form $M \times 2^E$

• Can reason about operations independent of implementation
 – As if computed with perfect precision and then rounded

• Not the same as real arithmetic
 – Violates associativity / distributivity
 – Makes life difficult for compilers and serious numerical applications programmers