Inheritance Concept

class Rectangle{

Polygon private:

int num\ertices;
float *xCoord, *yCoord,;

public:
m void set(float *x, float *y, int nV);
float area();
b
class Polygon{ class Triangle{
private: private:
Int num\ertices; int numVertices;
float *xCoord, *yCoord; float *xCoord, *yCoord;
public: public:
void set(float *x, float *y, int n\V/): void set(float *x, float *y, int nV);
1 float area();

}

Inheritance Concept

Polygon

/

class Polygon{
protected:
Int num\ertices;
float *xCoord, float *yCoord,;
public:

void set(float *x, float *y, int nV);
Rectangle }

class Rectangle : public Polygon{
public:
float area();

¥

class Rectangle{
protected:
Int num\ertices;
float *xCoord, float *yCoord,;
public:
void set(float *x, float *y, int nV);
float area();

}3

Inheritance Concept

class Polygon{
Po |yg on protected:

int numVertices:

float *xCoord, float *yCoord,;
public:
void set(float *x, float *y, int nV);
Ll A

class Triangle{

protected:
class Triangle : public Polygon{ int numVertices;
public: float *xCoord, float *yCoord;
float area(); = public:
e void set(float *x, float *y, int nV);

float area();

}3

Inheritance Concept

_ class Point{
Point y protected:

/ \ int x,y;
public:

Circle 3D-Point void set (int a, int b):

X

X X .
y y ¥
r Z
class Circle : public Point{ class 3D-Point: public Point{
private: private:
doubler; Int z;

Inheritance Concept

= Augmenting the original class

a

= Specializing the original class
[ComplexNumber } real

/, \\ imag

[RealNumber } [ImaginaryNumber} imag

real

Why Inheritance ?

Inheritance is a mechanism for
* building class types from existing class types

« defining new class types to be a
* specialization
* augmentation
of existing types

Define a Class Hierarchy

= Syntax:

class DerivedClassName : access-level BaseClassName

where

» access-level specifies the type of derivation
* private by default, or
* public

= Any class can serve as a base class

* Thus a derived class can also be a base class

Class Derivation

Point class Point{
I protected.:
int x, y;
BD'PO”T[pub"c:
Y void set (int a, int b);
Sphere ¥
class 3D-Point : public Point{ class Sphere : public 3D-Point{
private: private:
double z; doubler;
¥ ¥

Point is the base class of 3D-Point, while 3D-Point is the base class of Sphere

What to Iinherit?

= In principle, every member of a base class is
Inherited by a derived class

* just with different access permission

Access Control Over the Members

« Two levels of access control

base class/ superclass/ over class members
parent class —class definition
0 —Inheritance type
0
5 .
2 class Point{
€ protected: int X, y;
£ public: void set(int a, int b);
derived class/ subclass/ g
child class class Circle : public Point{

oooooo

10

Access Rights of Derived Classes

Type of Inheritance

o private protected public
=8 | private - . -

% O | protected | private protected | protected
3| public private protected public

= The type of inheritance defines the access level for the
members of derived class that are inherited from the
base class

Class Derivation

class mother{ class grandDaughter : public daughter {
protected: int mProc; private: double gPriv;
public: int mPubl; public: void gFoo ();
private: int mPriv; };
}
private/protected/public int main() {
class daughter : ------=-- mother{ x %/
private: double dPriv; 1

public: void dFoo ();
¢

void daughter :: dFoo (){
mPriv = 10; /lerror
mProc = 20;

¥

Access Rights of Derived Classes

class i : n n
test.cpp: In function “imnt main()':
test.cpp:6:7: ‘“int Parent::numl’

int nmuml;

A

int num2: test.cpp:18:12: within this con

|'_'l|_||:I-|.:LI:: cout <= b'.r:uml «< endl;
int num3; test.cpp:B:7: ‘int Parent::num2’ is

int num2;
M

lass Base:private Parent{}; test.cpp:19:12: within this context

CLASS

CLASS cout =< b.numZ =< endl;
FY
tnt matn()E test.cpp:10:7: ‘int Parent::num3’ is inaccessible
Base int num3;
FY
endl: test.cpp:20:12: within this con

cout cout =< b, << endl;

cout : endl;
cout endl:

Access Rights of Derived Classes

#include

test.cpp: In function “int main()":
test.cpp:6:7: ‘int Parent::numl’
int muml;
A
. . .
) LT nums; test.cpp:18:12: within this con
public: cout =< b.numl == endl;
int num3; "

test.cpp:B:7: ‘int Parent::numz” is

int num2;
FY

class Base:protected Parent{} test.cpp:19:12: within this context
cout == b.numZ == endl;

int main()f -

Base test.cpp:10:7: ‘“int Parent::num3’ is inaccessible

int mum3;
.

cout : endl; test.cpp:208:12: within this con

cout . endl; cout << b.num3 << endl;

cout endl; "

Access Rights of Derived Classes

#include <iostrs

using namespi

int muml;)
protected: test.cpp: In function “imt main()’:

int numz: test.cpp:6:7: ‘“int Parent::numl’
public: int numl;

- M

int num3; L .
test.cpp:18:12: within this con

cout =< b.numl << endl;
Y

test.cpp:B:T: ‘“int Parent::num2’ 1is

int num2:
M

s Base:public Parent{};

int main{){

Base test.cpp:19:12: within this cen

cout << b.num2 << endl:
cout == = A

cout
cout

recurn

What to inherit?

= In principle, every member of a base class is
Inherited by a derived class

* just with different access permission

= However, there are exceptions for

e constructor and destructor
e operator=() member
* friends

Since all these functions are class-specific

Constructor Rules for Derived Classes

The default constructor and the destructor of the
base class are always called when a new object of
a derived class iIs created or destroyed.

class A { class B : public A
public: {
A() public:
{cout<< “A:default”<<endl;} B (int a)
A (int a) {cout<<“B”<<endl;}
{cout<<*“A:parameter’<<endl;} };
o

output: A-default
B test(1); B

17

Constructor Rules for Derived Classes

You can also specify an constructor of the
base class other than the default constructor
DerivedClassCon (derivedClass args) : BaseClassCon (baseClass

args)
{ DerivedClass constructor body }

class A { class C : public A {
public: public:
A() C (inta) : A(a)
{cout<< “A:default”<<endl;} {cout<<“C”<<endl;}
A (inta) }:

{cout<<*A:parameter’<<endl;}

output: A-parameter
C test(1); C

18

Define 1ts Own Members

The derived class can also define class Point{
its own membgrs, i.n addition to orotected:
the members inherited from the int x, y:
base class e
public:
Point X void set(int a, int b);
y 1:
» /
y | Circle class Circle{
r protected:
int x, v,
class Circle : public Point{ orivate:
private: doubler;
doubler; public:
public: void set(int a, int b);
void set_r(double c); void set_r(double c);

Even more ...

= A derived class can override methods defined in its
parent class. With overriding,

» the method in the subclass has the identical signature to the method
In the base class.

« a subclass implements its own version of a base class method.

class A{ _
orotected: class B : public A {
int x, y: public:
oublic: void print ()
void print) ---------""""" {cout<<*“From B”<<endl;}
{cout<<“From A”’<<endl;} ¥

Even more ...

« Multiple Inheritance

Class A ‘ Class B ‘- - -- Class N ‘} Base Classes

 J
Class N+1

4+—— Derived Class

Access Method

class Point{ _ o
protected: class Circle : public Point{
int X, y; private: double r;
public: public:
void set(int a, int b) void set (int a, int b, double c) {
{x=a; y=t’)'} Point :: set(a, b); //same name function call
void foo (); r=¢,
void print(); ¥ o
}: void print(); };
Point A;

A.set(30,50); // from base class Point
A.print(); // from base class Point

[Lab - Practice #1]

= Calculate Average

Class : student
Variables : float math, science, english, korean, average

Class : school

Variables : student students[10]

Methods : void calc_avg()
void print_result()

Class : university
Variables : int m_credit, s_credit, e _credit, k_credit
Methods : void calc_avg()

School

University

UniversityA UniversityB

<score>

students[i].math=1*5 + 20
students]i].science =1*5 + 30
students[i].english=1*5+ 40
students[i].korean =1* 5 + 50
<main>

Int main(){

universityA univ_a(3, 4, 1, 2);
universityB univ_b(2, 1, 4, 3);

<output>

University A
student 0, math : 20, science : 30, english : 40, korean : 50, average : 32

University B
student 0, math : 20, science : 30, english : 40, korean : 50, average : 38

