
Inheritance Concept

1

class Rectangle{

private:

int numVertices;

float *xCoord, *yCoord;

public:

void set(float *x, float *y, int nV);

float area();

};

Rectangle
Triangle

Polygon

class Polygon{

private:

int numVertices;

float *xCoord, *yCoord;

public:

void set(float *x, float *y, int nV);

};

class Triangle{

private:

int numVertices;

float *xCoord, *yCoord;

public:

void set(float *x, float *y, int nV);

float area();

};



Inheritance Concept

2

Rectangle
Triangle

Polygon
class Polygon{

protected:

int numVertices;

float *xCoord, float *yCoord;

public:

void set(float *x, float *y, int nV);

};

class Rectangle : public Polygon{

public:

float area();

};

class Rectangle{

protected:

int numVertices;

float *xCoord, float *yCoord;

public:

void set(float *x, float *y, int nV);

float area();

};



Inheritance Concept

3

Rectangle
Triangle

Polygon

class Polygon{

protected:

int numVertices;

float *xCoord, float *yCoord;

public:

void set(float *x, float *y, int nV);

};

class Triangle : public Polygon{

public:

float area();

};

class Triangle{

protected:

int numVertices;

float *xCoord, float *yCoord;

public:

void set(float *x, float *y, int nV);

float area();

};



Inheritance Concept

4

Point

Circle 3D-Point

class Point{

protected:

int x, y;

public:

void set (int a, int b);

};

class Circle : public Point{

private: 

double r;

};

class 3D-Point: public Point{

private: 

int z;

};

x

y

x

y

r

x

y

z



Inheritance Concept

▪ Augmenting the original class

▪ Specializing the original class

5

RealNumber

ComplexNumber

ImaginaryNumber

Rectangle
Triangle

Polygon Point

Circle

real

imag

real imag

3D-Point



Why Inheritance ?

Inheritance is a mechanism for 

• building class types from existing class types

• defining new class types to be a

• specialization 

• augmentation 

of existing types

6



Define a Class Hierarchy

▪ Syntax:

class DerivedClassName : access-level BaseClassName

where 

• access-level specifies the type of derivation

• private by default, or

• public

▪ Any class can serve as a base class

• Thus a derived class can also be a base class

7



Class Derivation

8

Point

3D-Point

class Point{

protected:

int x, y;

public:

void set (int a, int b);

};

class 3D-Point : public Point{

private: 

double z;

… …

};

class Sphere : public 3D-Point{

private:  

double r;

… …

};

Sphere

Point is the base class of 3D-Point, while 3D-Point is the base class of Sphere



What to inherit?

▪ In principle, every member of a base class is 

inherited by a derived class

• just with different access permission

9



Access Control Over the Members

1
0

• Two levels of access control 

over class members

–class definition

– inheritance type

base class/ superclass/

parent class

derived class/ subclass/

child class

d
e
ri
v
e
 f

ro
m

m
e
m

b
e
rs

 g
o
e
s
 t
o

class Point{

protected: int x, y;

public: void set(int a, int b);

};

class Circle : public Point{

… …

};



Access Rights of Derived Classes

▪ The type of inheritance defines the  access level for the 

members of derived class that are inherited from the 

base class

11

private protected public

private - - -

protected private protected protected

public private protected public

Type of Inheritance

A
ccess C

o
n

tro
l

fo
r M

em
b

ers



Class Derivation

1
2

class daughter : --------- mother{

private: double dPriv;

public: void mFoo ( );

};

class mother{

protected: int mProc;

public: int mPubl;

private: int  mPriv;

};

class daughter : --------- mother{

private: double dPriv;

public: void dFoo ( );

};

void daughter :: dFoo ( ){

mPriv = 10;   //error

mProc = 20;

};

private/protected/public
int main() {

/*….*/

}

class grandDaughter : public daughter {

private: double gPriv;

public: void gFoo ( );

};



Access Rights of Derived Classes

1
3



Access Rights of Derived Classes

1
4



Access Rights of Derived Classes

1
5



What to inherit?

▪ In principle, every member of a base class is 

inherited by a derived class

• just with different access permission

▪ However, there are exceptions for

• constructor and destructor 

• operator=() member 

• friends

Since all these functions are class-specific

1
6



Constructor Rules for Derived Classes 

1
7

The default constructor and the destructor of the 
base class are always called when a new object of 
a derived class is created or destroyed.

class A {

public:

A ( )

{cout<< “A:default”<<endl;}

A (int a)

{cout<<“A:parameter”<<endl;}

};

class B : public A 

{

public: 

B (int a)

{cout<<“B”<<endl;}

};

B test(1);
A:default

B

output:



Constructor Rules for Derived Classes 

1
8

You can also specify an constructor of the 
base class other than the default constructor

class A {

public:

A ( )

{cout<< “A:default”<<endl;}

A (int a)

{cout<<“A:parameter”<<endl;}

};

class C : public A {

public: 

C (int a) : A(a)

{cout<<“C”<<endl;}

};

C test(1);
A:parameter

C

output:

DerivedClassCon ( derivedClass args ) : BaseClassCon ( baseClass 

args ) 

{  DerivedClass constructor body   }



Define its Own Members

1
9

Point

Circle

class Point{

protected:

int x, y;

public:

void set(int a, int b);

};

class Circle : public Point{

private: 

double r;

public:

void set_r(double c);

};

x

y

x

y

r

class Circle{

protected:

int x, y;

private:

double r;

public:

void set(int a, int b);

void set_r(double c);

};

The derived class can also define 
its own members,  in addition to 
the members inherited from the 
base class



Even more …

▪ A derived class can override methods defined in its 

parent class. With overriding,

• the method in the subclass has the identical signature to the method 

in the base class. 

• a subclass implements its own version of a base class method. 

2
0

class A {

protected:

int x, y;

public:

void print ()

{cout<<“From A”<<endl;}

};

class B : public A {

public: 

void print ()

{cout<<“From B”<<endl;}

};



Even more …

2
1

• Multiple Inheritance



Access Method

2
2

class Point{

protected:

int x, y;

public:

void set(int a, int b)

{x=a; y=b;}

void foo ();

void print();

};

class Circle : public Point{

private:  double r;

public:

void set (int a, int b, double c) {

Point :: set(a, b); //same name function call

r = c;

}

void print();  };

Circle C;

C.set(10,10,100);   // from class Circle

C.foo ();  // from base class Point

C.print(); // from class Circle

Point A;

A.set(30,50);  // from base class Point

A.print(); // from base class Point



[Lab – Practice #1]

▪ Calculate Average

Class : student

Variables : float math, science, english, korean, average

Class : school

Variables : student students[10]

Methods : void calc_avg() 

void print_result()

Class : university

Variables : int m_credit, s_credit, e_credit, k_credit

Methods : void calc_avg()



2
4

School

University

UniversityA UniversityB



students[i].math = i * 5 + 20

students[i].science = i * 5 + 30

students[i].english = i * 5 + 40

students[i].korean = i * 5 + 50

int main(){

universityA univ_a(3, 4, 1, 2);

universityB univ_b(2, 1, 4, 3);

}

University A

student 0, math : 20, science : 30, english : 40, korean : 50, average : 32

….

University B

student 0, math : 20, science : 30, english : 40, korean : 50, average : 38

<output>

<main>

<score>


