Threads

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Today’s Topics

- Why threads?
- Threading issues
Processes

- Heavy-weight
 - A process includes many things:
 - An address space (all the code and data pages)
 - OS resources (e.g., open files) and accounting info.
 - Hardware execution state (PC, SP, registers, etc.)
 - Creating a new process is costly because all of the data structures must be allocated and initialized
 - Linux: over 100 fields in task_struct (excluding page tables, etc.)
 - Inter-process communication is costly, since it must usually go through the OS
 - Overhead of system calls and copying data
Web server example

- Using fork() to create new processes to handle requests in parallel is overkill for such a simple task.

```c
While (1) {
    int sock = accept();
    if ((pid = fork()) == 0) {
        /* Handle client request */
    } else {
        /* Close socket */
    }
}
```
Cooperating Processes

- **Example**
 - A web server, which forks off copies of itself to handle multiple simultaneous tasks
 - Any parallel program on a multiprocessor

- **We need to:**
 - Create several processes that execute in parallel
 - Cause each to map the same address space to share data (e.g., shared memory)
 - Have the OS schedule these processes in parallel

- **This is very inefficient!**
 - Space: PCB, page tables, etc.
 - Time: creating OS structures, fork and copy address space, etc.
Rethinking Processes

- **What’s similar in these cooperating processes?**
 - They all share the same code and data (address space)
 - They all share the same privilege
 - They all share the same resources (files, sockets, etc.)

- **What’s different?**
 - Each has its own hardware execution state: PC, registers, SP, and stack.
Key Idea (1)

- Separate the concept of a process from its execution state
 - Process: address space, resources, other general process attributes (e.g., privileges)
 - Execution state: PC, SP, registers, etc.

- This execution state is usually called
 - a thread of control,
 - a thread, or
 - a lightweight process (LWP)
Key Idea (2)

(a) Process 1

User space

Kernel space

(b) Process

Kernel

Thread
Key Idea (3)

Single-threaded process

Multithreaded process
What is a Thread?

- A thread of control (or a thread)
 - A sequence of instructions being executed in a program.
 - Usually consists of
 - a program counter (PC)
 - a stack to keep track of local variables and return addresses
 - registers
 - Threads share the process instructions and most of its data.
 - A change in shared data by one thread can be seen by the other threads in the process
 - Threads also share most of the OS state of a process.
Concurrent Servers: Threads

- **Using threads**
 - We can create a new thread for each request.

```c
webserver ()
{
   While (1) {
      int sock = accept();
      thread_fork (handle_request, sock);
   }
}
handle_request (int sock)
{
   /* Process request */
   close (sock);
}
```
Multithreading

- Benefits
 - Creating concurrency is cheap.
 - Improves program structure.
 - Throughput
 - By overlapping computation with I/O operations
 - Responsiveness (User interface / Server)
 - Can handle concurrent events (e.g., web servers)
 - Resource sharing
 - Economy
 - Utilization of multiprocessor architectures
 - Allows building parallel programs.
Processes vs. Threads

- Processes vs. Threads
 - A thread is bound to a single process.
 - A process, however, can have multiple threads.
 - Sharing data between threads is cheap: all see the same address space.
 - Threads become the unit of scheduling.
 - Processes are now containers in which threads execute.
 - Processes become static, threads are the dynamic entities.
Process Address Space

Address space:
- Stack (dynamic allocated mem)
- Heap (dynamically allocated mem)
- Static data (data segment)
- Code (text segment)

0x00000000 - 0xFFFFFFFF

SP
PC

0x00000000

0xFFFFFFFF
Address Space with Threads

Address space

- 0xFFFFFFFF
- 0x00000000

Thread 1 stack
- SP (T1)

Thread 2 stack
- SP (T2)

Thread 3 stack
- SP (T3)

Heap
(dynamically allocated mem)

Static data
(data segment)

Code
(text segment)

PC

PC (T1)

PC (T2)

PC (T3)
Classification

<table>
<thead>
<tr>
<th># threads per addr space:</th>
<th># of addr spaces:</th>
<th>One</th>
<th>Many</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>One</td>
<td>MS/DOS Early Macintosh</td>
<td>Traditional UNIX</td>
</tr>
<tr>
<td>Many</td>
<td>Many</td>
<td>Many embedded Oses (VxWorks, uCLinux, ..)</td>
<td>Mach, OS/2, Linux, Windows, Mac OS X, Solaris, HP-UX</td>
</tr>
</tbody>
</table>
 Threads Interface (1)

- **Pthreads**
 - A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization.
 - API specifies behavior of the thread library.
 - Implementation is up to development of the library.
 - Common in UNIX operating systems.
Threads Interface (2)

- **POSIX-style threads**
 - Pthreads
 - DCE threads (early version of Pthreads)
 - Unix International (UI) threads (Solaris threads)
 - Sun Solaris 2, SCO Unixware 2

- **Microsoft-style threads**
 - Win32 threads
 - Microsoft Windows 98/NT/2000/XP
 - OS/2 threads
 - IBM OS/2
Pthreads (1)

- Thread creation/termination

```c
int pthread_create (pthread_t *tid,
                    pthread_attr_t *attr,
                    void *(start_routine)(void *),
                    void *arg);

void pthread_exit (void *retval);

int pthread_join (pthread_t tid,
                  void **thread_return);
```
Pthreads (2)

- Mutexes

```c
int pthread_mutex_init
  (pthread_mutex_t *mutex,
   const pthread_mutexattr_t *mattr);

void pthread_mutex_destroy
  (pthread_mutex_t *mutex);

void pthread_mutex_lock
  (pthread_mutex_t *mutex);

void pthread_mutex_unlock
  (pthread_mutex_t *mutex);
```
Pthreads (3)

- Condition variables

```c
int pthread_cond_init
    (pthread_cond_t *cond,
     const pthread_condattr_t *cattr);

void pthread_cond_destroy
    (pthread_cond_t *cond);

void pthread_cond_wait
    (pthread_cond_t *cond,
     pthread_mutex_t *mutex);

void pthread_cond_signal
    (pthread_cond_t *cond);

void pthread_cond_broadcast
    (pthread_cond_t *cond);
```
Threading Issues (1)

- **fork() and exec()**
 - When a thread calls fork(),
 - Does the new process duplicate all the threads?
 - Is the new process single-threaded?
 - Some UNIX systems support two versions of fork().
 - In Pthreads,
 » fork() duplicates only a calling thread.
 - In the Unix International standard,
 » fork() duplicates all parent threads in the child.
 » fork1() duplicates only a calling thread.
 - Normally, exec() replaces the entire process.
Threading Issues (2)

- **Thread cancellation**
 - The task of terminating a thread before it has completed.
 - **Asynchronous cancellation**
 - Terminates the target thread immediately.
 - What happens if the target thread is holding a resource, or it is in the middle of updating shared resources?
 - **Deferred cancellation**
 - The target thread is terminated at the cancellation points.
 - The target thread periodically check if it should be cancelled.
 - Pthreads API supports both asynchronous and deferred cancellation.
Threading Issues (3)

- **Signal handling**
 - Where should a signal be delivered?
 - To the thread to which the signal applies.
 - for synchronous signals.
 - To every thread in the process.
 - To certain threads in the process.
 - typically only to a single thread found in a process that is not blocking the signal.
 - Pthreads: per-process pending signals, per-thread blocked signal mask
 - Assign a specific thread to receive all signals for the process.
 - Solaris 2
Threading Issues (4)

- **Using libraries**
 - **errno**
 - Each thread should have its own independent version of the errno variable.
 - **Multithread-safe (MT-safe)**
 - A set of functions is said to be multithread-safe or reentrant, when the functions may be called by more than one thread at a time without requiring any other action on the caller’s part.
 - Pure functions that access no global data or access only read-only global data are trivially MT-safe.
 - Functions that modify global state must be made MT-safe by synchronizing access to the shared data.