

Architectural Support

for Operating Systems

Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

2 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Snc`xŝr Snohbr

ÁBasic structure of OS

ÁBasic computer system architecture

ÁArchitectural support for OS

3 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

OS Internals (1)

Kernel

Arch-dependent kernel code

System Call Interface

Hardware Platform

C Library (libc)

User Application

User space

Kernel space

4 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

OS Internals (2)

Hardware

System Call Interface

shell
shell

ls
ps

Hardware Control (Interrupt handling, etc.)

File System
Management

I/O Management
(device drivers)

Memory
Management

Process
Management

P
ro

te
c
tio

n

Kernel
space

User
space trap

scheduler

IPC

synchronization

5 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems (1)

ÁComputer system organization

6 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems (2)

ÁCharacteristics

ÅI/O devices and CPU can execute concurrently

ÅEach device controller is in charge of a particular
device type

ÅEach device controller has a local buffer

ÅCPU moves data from/to main memory to/from local
buffers

ÅI/O is from the device to local buffer of controller

ÅCPU issues specific commands to I/O devices

ÅCPU should be able to know whether the issued
command has been completed or not

7 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

OS and Architecture

ÁMutual interaction

ÅThe functionality of an OS is limited by architectural
features.
ŕMultiprocessing on DOS/8086?

ÅThe structure of an OS can be simplified by
architectural support.
ŕInterrupt, DMA, synchronization, etc .

ÅMost proprietary OSŚs were developed with the
certain architecture in mind .
ŕSunOS/Solaris for SPARC architecture

ŕIBM AIX for Power/PowerPC architecture

ŕHP-UX for PA-RISC architecture

ŕ...

8 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Interrupts (1)

ÁHow does the kernel notice an I/O has
finished?

ÅPolling

ÅHardware interrupt

9 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Interrupts (2)

ÁInterrupt handling

ÅPreserves the state of the CPU
ŕIn a fixed location

ŕIn a location indexed by the device
number

ŕOn the system stack

ÅDetermines the type
ŕPolling

ŕVectored interrupt system

ÅTransfers control to the interrupt
service routine (ISR) or interrupt
handler

10 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (1)

ÁInterrupts

ÅGenerated by hardware devices
ŕTriggered by a signal in INTR or NMI pins (x86)

ÅAsynchronous

ÁExceptions

ÅGenerated by software executing instructions
ŕINT instruction in x86

ÅSynchronous

ÅException handling is same as interrupt handling

11 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (2)

ÁFurther classification of exceptions

ÅTraps
ŕIntentional

ŕSystem calls, breakpoint traps, special instructions, ...

ŕReturn control to ŗnextŘ instruction

ÅFaults
ŕUnintentional but possibly recoverable

ŕPage faults (recoverable), protection faults (unrecoverable), ...

ŕEither re-execute faulting (ŗcurrentŘ) instruction or abort

ÅAborts
ŕUnintentional and unrecoverable

ŕParity error, machine check, ...

ŕAbort the current program

12 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (3)

ÁSystem calls

ÅProgramming interface to the services provided by
OS

Åe.g., system call sequence to copy the contents of
one file to another

13 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (4)

ÁImportant system calls (POSIX & Win32)
Create a new process

Wait for a process to exit

CreateProcess = fork + execve

Terminate execution

Send a signal

CreateProcess

WaitForSingleObject

(none)

ExitProcess

(none)

fork

waitpid

execve

exit

kill

Process

Management

Create a file or open an existing file

Close a file

Read data from a file

Write data to a file

Move the file pointer

Get various file attributes

Change the file access permission

CreateFile

CloseHandle

ReadFile

WriteFile

SetFilePointer

GetFileAttributesEx

(none)

open

close

read

write

lseek

stat

chmod

File

Management

Create a new directory

Remove an empty directory

Make a link to a file

Destroy an existing file

Mount a file system

Unmount a file system

Change the curent working directory

CreateDirectory

RemoveDirectory

(none)

DeleteFile

(none)

(none)

SetCurrentDirectory

mkdir

rmdir

link

unlink

mount

umount

chdir

File System

Management

14 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (5)

ÁImplementing system calls

15 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (6)

ÁHlokdldmshmf rxrsdl b`kkr 'bnmsŝc(

count = read (fd , buffer, nbytes);

16 SSE3044: Operating Systems | Fall 2012 | Jin-Soo Kim (jinsookim@skku.edu)

DMA (1)

ÁData transfer modes in I/O

ÅProgrammed I/O (PIO)
ŕCPU is involved in moving data between I/O devices and

memory

ŕBy special I/O instructions vs. by memory -mapped I/O

ÅDMA (Direct Memory Access)
ŕUsed for high -speed I/O devices able to transmit information

at close to memory speeds

ŕDevice controller transfers blocks of data from buffer storage
directly to main memory without CPU intervention.

ŕOnly an interrupt is generated per block.

