
Introduction to Pintos

Prof. Jin-Soo Kim (jinsookim@skku.edu)

TAs – Jong-Sung Lee (leitia@csl.skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

2SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (1)

 Projects

• Project 1: Threads
– pintos/src/threads

• Project 2: User programs
– pintos/src/userprog

• Project 3: Virtual memory
– pintos/src/vm

• Project 4: File system
– pintos/src/filesys

• Use “make” command in each of project directories

3SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (2)

 Interesting files in the ./build directory

• kernel.o:
– The object file for the entire kernel

– Used for debugging

• kernel.bin:
– The memory image of the kernel

• loader.bin:
– The memory image of the kernel loader (512 bytes)

– Reads the kernel from disk into memory and starts it up

• os.dsk:
– Disk image for the kernel (loader.bin + kernel.bin)

– Used as a “virtual disk” by the simulator

4SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (3)

 Running Pintos

• Add “pintos/src/utils” to $PATH and run “pintos”

$ export PATH=“~/pintos/src/utils:$PATH”

$ pintos [option] -- [argument]

• Option
– Configure the simulator or the virtual hardware

• Argument
– Each argument is passed to the Pintos kernel verbatim

– ‘pintos run alarm-multiple’ instructs the kernel to run alarm-
multiple

• Pintos script
– Parse command line, find disks, prepare arguments, run the

simulator (Bochs)

5SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (4)

 Project testing
$ make check

$ make grade

6SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (5)

 Useful tools

• gdb: The GNU project debugger
– Allows to see what’s going on inside another program while

it executes

– Refer to Appendix E.5: GDB

• Tags
– An index to the functions and global variables

– Powerful when it is combined with vi editor

– Refer to Appendix F.1: Tags

• CVS: Version-control system
– Useful for version controls and concurrent development

– Refer to Appendix F.3: CVS

7SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (6)

 Tips

• Read the project specification carefully

• Before starting your project, read the document
template too!
– It may give you useful tips

• Study the test cases in pintos/src/tests used by
“make check”
– One C program for each test case (*.c)

– One Perl script to check whether your implementation is
correct or not (*.ck)

– Study the correct output stored in the perl script

• Do it incrementally
– Otherwise, it can be totally messed up

System Startup

Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

9SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

System Startup (1)

 Overview

• BIOS

• Boot loader

• Kernel initialization

10SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

System Startup (2)

 The BIOS

• The CPU initializes itself and then begins to execute
an instruction at a fixed location (0xffff fff0)

• Those instructions are supplied from ROM and make
the CPU jump into the BIOS

• The BIOS finds a boot device and loads its first sector
into memory
– Starting from physical address 0x0000 7c00

– The first sector contains the Pintos’ loader
(threads/loader.S)

• The BIOS transfers control to the loader

11SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

System Startup (3)

 The boot loader

• Enables memory accesses beyond first 1MB
– For historical reasons, this initialization is required

• Asks the BIOS for the PC’s memory size
– Again for historical reasons, the function we use can only

detect up to 64MB of RAM (This is the limit that Pintos can
support)

– The memory size is stored in the loader and the kernel can
read the information after it boots

• Creates a basic page table
– This page table maps the 64MB at the base (starting at

virtual address 0) directly to identical physical address

– It also maps the same physical memory starting at virtual
address LOADER_PHYS_BASE (0xc000 0000)

12SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

System Startup (4)

 The boot loader (cont’d)

• Turns on protected mode and paging
– Interrupts are still disabled

• Loads the kernel from disk
– Assumptions:

» The kernel is stored starting from the second sector of
the first IDE disk

» The BIOS has already set up the IDE controller

– The loader loads the kernel starting at physical address
LOADER_KERN_BASE (0x0010 0000)

• Jumps to the kernel entry point
– main() in src/threads/init.c

– Set up using the linker script (threads/kernel.lds.S)

13SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

System Startup (5)

 Kernel initialization

• Clears BSS and get machine’s RAM size

• Initializes threads system

• Initializes VGA, serial port, and console
– To print a startup message to the console

• Greets user and reading kernel command line
– “Kernel command line: “

• Initializes memory system

• Initializes random number generator and interrupt
system

• Starts thread scheduler and enables interrupts

• Initializes file system

Project Policies

Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

15SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project Schedule

 Project 0

• Warming-up project (1 weeks, 9/9~9/15)

 Project 1

• Threads (2 weeks, 9/16~9/29)

 Project 2

• User programs (4 weeks, 10/7~11/3)

 Project 3

• Virtual memory (4 weeks, 11/11~12/8)

 This schedule is subject to change

16SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project Policy (1)

 Late policy

• 30% off per day after due date.

17SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project Policy (2)
 Cheating policy

• “Copying all or part of another person’s work, or
using reference material not specifically allowed, are
forms of cheating and will not be tolerated.”

• For a student involved in an incident of cheating, the
following policy will apply:
– You will get a penalty in the final grade (down to F)

– For serious offenses, this will be notified to the department
chair

• Share useful information: helping others use systems
or tools, helping them with high-level designs or
debug their code is NOT cheating!

• To check cheating, TA see submission server, analyze
detail code & ask

18SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project Grading (1)

 Functionality (70%)

$ make check

$ make grade

 Design & documentation (30%)

• Source code
– variable name, function name, comments

• Design document
– Data structure, Algorithm, Synchronization, Rationale

• Refer to Appendix D: Project Documentation

 Demos & oral tests

19SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project Grading (2)

 Source code

• comments

20SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project Grading (3)

 Demos & oral tests

• Usually done in the next week of the due date

• Everyone should meet the TA offline

• You may bring your notebook as there could be a
problem in running your solution in the TA’s machine

• You should be able to answer any questions on
– Basic system architecture

– Design decisions

– Implementation details

– ...

Project 0:

Warming Up

22SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project 0 (1)

 Set up your own project environment

• Install Linux

• Install all the required tools

• Install Pintos

23SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project 0 (2)

 Add a new test code: print-name

• Add a new kernel function which prints your name in
ASCII text format

• To run the new function, add a new command
“print-name”

– The following command should run your new function

$ pintos run print-name

• Work in the pintos/src/threads and
pintos/src/tests/threads directories

24SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project 0 (3)

 Add a new test code: print-name

• Print format
– (print-name) Course : SSE3044

– (print-name) ID : 2010000000

– (print-name) Name : GilDong Hong

• Capture screenshot

25SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Project 0 (4)

 Example:

26SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Submission (1)

 Documentation

• A screen shot of “alarm-multiple”

• A screen shot of “print-name”

• Detailed explanation of how the “print-name” is
handled and your name is printed by the kernel

• File format – PDF format

• File name – “GDHong_2013123456.pdf”

 Source code

• Tar and gzip your Pintos source codes
$ cd pintos

$ (cd src/threads; make clean)

$ tar cvzf GDHong_2013123456.tar.gz src

27SSE3044: Operating Systems | Fall 2013 | Jin-Soo Kim (jinsookim@skku.edu)

Submission (2)

 Due

• Sep. 15, 11:59PM

• Submit your source code and documentation via
sse3044@csl.skku.edu

• Good luck!

