Warning

- You are now taking the most challenging course in the software track
- Lectures will be easy, but projects will not
Introduction

- **Schedule**
 - 10:30 – 11:45 (Mon. & Wed.)
 - Lecture room: #400126, Semiconductor Bldg.

- **Course homepage**
 - http://csl.skku.edu/SSE3044F15/
 - Lecture slides, announcements, exam scores, projects, etc.
 - Don’t waste your time in i-Campus

- **TA**
 - 현병훈: gusqudgns@csl.skku.edu
 - #85561 in Corporate Collaboration Center
About Me

- **Jinkyu Jeong**
 - Assistant professor @ SSE
 - Computer Systems laboratory
 - Office: Semiconductor bldg. #400626 (6th floor)
 - Email: jinkyu@skku.edu
 - URL: http://csl.skku.edu/People/Jinkyu
 - Tel: 031-290-7692
 - Office hours: 13:00~14:00 in Thursday & Friday
 - Email contact is preferred
System Software Track

<table>
<thead>
<tr>
<th>2학년</th>
<th>3학년</th>
<th>4학년</th>
</tr>
</thead>
<tbody>
<tr>
<td>1학기</td>
<td>1학기</td>
<td>1학기</td>
</tr>
<tr>
<td>2학기</td>
<td>2학기</td>
<td>2학기</td>
</tr>
<tr>
<td>문제해결방법</td>
<td>자료구조 및 알고리즘</td>
<td>컴퓨터그래픽스*</td>
</tr>
<tr>
<td>논리회로</td>
<td>컴퓨터시스템 개론</td>
<td>인공지능*</td>
</tr>
<tr>
<td>논리회로설계실험</td>
<td>컴퓨터구조</td>
<td>객체지향시스템 설계*</td>
</tr>
<tr>
<td>공학수학1</td>
<td>마이크로프로세서</td>
<td>멀티코어시스템</td>
</tr>
<tr>
<td>전자기학1</td>
<td>마이크로프로세서 실험</td>
<td>이동컴퓨팅</td>
</tr>
<tr>
<td>기초전기회로1</td>
<td>디지털시스템</td>
<td>임베디드시스템 설계</td>
</tr>
<tr>
<td>기초전기회로2</td>
<td>소프트웨어공학*</td>
<td>임베디드시스템 실험</td>
</tr>
<tr>
<td>기초전기회로실험</td>
<td>데이터베이스*</td>
<td>SoC설계</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is OS?

- Computer systems internals
Why Do We Learn OS?

- To graduate?
- To make a better OS or system
 - Functionality
 - Performance/cost
 - Reliability
 - Energy efficiency
- To make a new hardware up and running
- To design OS-aware hardware
- To understand computer systems better
- Just for fun
Prerequisites

- C programming skills
- Basic knowledge of Unix/Linux systems
- SSE2030 (Introduction to Computer Systems) or CSE2003 (System Programming) or SWE2001 (System Programming)
- ICE3003 (Computer Architecture)
Textbook

- Operating System Concepts
 - 9th Edition
 - Written by A. Silberschatz, P. B. Galvin and G. Gagne
 - Published by Wiley & Sons Inc.
 - 2014
References (1)

- Operating Systems: Internals and Design Principles (8th ed.)
 - William Stallings
 - Prentice Hall, 2014

- Modern Operating Systems (4th ed)
 - Andrew S. Tanenbaum,
 - Prentice Hall, 2014
References (2)

- **For Linux:**
 - *Understanding the Linux Kernel* (3rd ed.)
 - D. Bovet and M. Cesati,
 - O’Reilly & Associates, 2015

- **For Windows:**
 - *Windows Internals* (6th ed.)
 - Mark E. Russinovich, David A. Solomon, and Alex Ionescu,
 - Microsoft Press, 2012

- **For Solaris:**
 - *Solaris Internals*
 - Richard McDougall and Jim Mauro
 - Sun Microsystems, 2001
Course Plan

- Lectures
 - General operating system concepts
 - Case study: Linux

- Hands-on projects
 - Using Pintos instructional OS
Lecture Topics

- Operating system structure overview
- Processes and threads
- CPU Scheduling
- Synchronization
- Deadlocks
- Memory management
- Virtual memory
- I/O systems
- Storage
- Filesystems
- Machine virtualization
Pintos Projects (1)

What is Pintos?

- An instructional operating system based on Nachos
- Developed by Ben Pfaff @ Stanford University
- A real, bootable OS for 80x86 architecture
 - Run on a regular IBM-compatible PC or an x86 simulator
- Written in C with minimal assembly code
Pintos Projects (2)

- Initially, the source tree of Pintos has a skeleton
 - Do nothing but testing the functionality
- You are supposed to fill in the empty code to provide following features
 - Thread scheduling
 - User programs
 - Virtual memory management
Pintos Projects (3)

- Lab session
 - A separate class with the TA
 - Once a week (mandatory)
 - Project announcement
 - Q&A
 - Hints & helps
 - Oral tests
 - ...

- Lab time?
Project Schedule

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 0 (Warming-up)</td>
<td>1 week</td>
</tr>
<tr>
<td>Project 1 (Threads)</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Project 1 Oral test</td>
<td>1 week</td>
</tr>
<tr>
<td>Project 2 (User programs)</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Project 2 Oral test</td>
<td>1 week</td>
</tr>
<tr>
<td>Project 3 (Virtual memory)</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Project 3 Oral test</td>
<td>1 week</td>
</tr>
</tbody>
</table>

- The schedule is subject to change
Class Policies (1)

- **Grading policy (subject to change)**
 - Class attendance: 10%
 - Exams: 35% (mid-term & final)
 - Projects: 55%

- **Class attendance policy**
 - If you miss any one of the exams, you will fail this course
 - No lateness is allowed
 - Up to four absences will be tolerated
Class Policies (2)

- **Cheating policy**
 - **What is cheating?**
 - Copying another student’s solution (or one from the Internet) and submitting it as your own
 - Allowing another student to copy your solution
 - **What is NOT cheating?**
 - Helping others use systems or tools
 - Helping others with high-level design issues
 - Helping others debug their code
 - **Penalty for cheating:**
 - Severe penalty on the grade and report to dept. chair
 - **Ask helps to your TA if you experience any difficulty**
Keys to Success

- Read textbook exhaustively
- Think, think, think
- Begin your project assignments as early as possible
Questions?