Storage Systems

Jinkyu Jeong (jinkyu@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Today’s Topics

- HDDs (Hard Disk Drives)
- Disk scheduling policies
Secondary Storage

- Secondary storage usually
 - is anything that is outside of “primary memory”.
 - does not permit direct execution of instructions or data retrieval via machine load/store instructions.

- Characteristics
 - It’s large: 100GB and more
 - It’s cheap: 1TB SATA2 disk costs ₩66,000.
 - It’s persistent: data survives power loss.
 - It’s slow: milliseconds to access.
HDDs (1)

Electromechanical
- Rotating disks
- Arm assembly

Electronics
- Disk controller
- Buffer
- Host interface
HDDs (2)

- Seagate Barracuda ST31000528AS (1TB)
 - 4 Heads, 2 Discs
 - Max. recording density: 1413K BPI (bits/inch)
 - Avg. track density: 236K TPI (tracks/inch)
 - Avg. areal density: 329 Gbits/sq.inch
 - Spindle speed: 7200rpm (8.3ms/rotation)
 - Average seek time: < 8.5ms (read), < 9.5ms (write)
 - Max. internal data transfer rate: 1695 Mbits/sec
 - Max. I/O data transfer rate: 300MB/sec (SATA-2)
 - Max. sustained data transfer rate: 125MB/sec
 - Internal cache buffer: 32MB
 - Max power-on to ready: < 10.0 sec
HDDs (3)

- Hard disk internals

- Our Boeing 747 will fly at the altitude of only a few mm at the speed of approximately 65mph periodically landing and taking off.
- And still the surface of the runway, which consists of a few mm-thick layers, will stay intact for years.
Managing Disks (1)

- Disks and the OS
 - Disks are messy physical devices:
 - Errors, bad blocks, missed seeks, etc.
 - The job of the OS is to hide this mess from higher-level software.
 - Low-level device drivers (initiate a disk read, etc)
 - Higher-level abstractions (files, databases, etc.)
 - The OS may provide different levels of disk access to different clients.
 - Physical disk block (surface, cylinder, sector)
 - Disk logical block (disk block #)
 - Logical file (filename, block or record or byte #)
Managing Disks (2)

- Interacting with disks
 - Specifying disk requests requires a lot of info:
 - Cylinder #, surface #, track #, sector #, transfer size, etc.
 - Older disks required the OS to specify all of this
 - The OS needs to know all disk parameters.
 - Modern disks are more complicated.
 - Not all sectors are the same size, sectors are remapped, etc.
 - Current disks provide a higher-level interface (e.g., SCSI)
 - The disks exports its data as a logical array of blocks [0..N-1]
 - Disk maps logical blocks to cylinder/surface/track/sector.
 - Only need to specify the logical block # to read/write.
 - As a result, physical parameters are hidden from OS.
Managing Disks (3)

Disk performance

- Performance depends on a number of steps
 - **Seek**: moving the disk arm to the correct cylinder
 → depends on how fast disk arm can move (increasing very slowly)
 - **Rotation**: waiting for the sector to rotate under head
 → depends on rotation rate of disk (increasing, but slowly)
 - **Transfer**: transferring data from surface into disk controller, sending it back to the host.
 → depends on density of bytes on disk (increasing, and very quickly)

- Disk scheduling:
 - Because seeks are so expensive, the OS tries to schedule disk requests that are queued waiting for the disk.
FCFS

- FCFS (= do nothing)
 - Reasonable when load is low.
 - Long waiting times for long request queues.

Queue: 98, 183, 37, 122, 14, 124, 65, 67
Head starts at 53
SSTF

- **Shortest seek time first**
 - Minimizes arm movement (seek time)
 - Maximizes request rate
 - Unfairly favors middle blocks
 - May cause starvation of some requests

![Diagram showing SSTF with queue = 98, 183, 37, 122, 14, 124, 65, 67 and head starts at 53]
- **Elevator algorithm**
 - Service requests in one direction until done, then reverse
 - Skews wait times non-uniformly

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
C-SCAN

- **Circular SCAN**
 - Like SCAN, but only go in one direction (e.g. typewriters)
 - Uniform wait times

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
LOOK / C-LOOK

- Similar to SCAN/C-SCAN, but the arm goes only as far as the final request in each direction.

queue: 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
Disk Scheduling (1)

- Selecting a disk scheduling algorithm
 - SSTF is common and has a natural appeal.
 - SCAN and C-SCAN perform better for systems that place a heavy load on the disk.
 - Either SSTF or LOOK is a reasonable choice for the default algorithm.
 - Performance depends on the number and types of requests.
 - Requests for disk service can be influenced by the file allocation method.
 - In general, unless there are request queues, disk scheduling does not have much impact.
 - Important for servers, less so for PCs
 - Modern disks often do the disk scheduling themselves.
 - Disks know their layout better than OS, can optimize better.
 - Ignores, undoes any scheduling done by OS.
Modern Disks

- Intelligent controllers
 - A small CPU + many kilobytes of memory.
 - They run a program written by the controller manufacturer to process I/O requests from the CPU and satisfy them.
 - Intelligent features:
 - Read-ahead: the current track
 - Caching: frequently-used blocks
 - Command queueing
 - Request reordering: for seek and/or rotational optimality
 - Request retry on hardware failure
 - Bad block/track identification
 - Bad block/track remapping: onto spare blocks and/or tracks
I/O Schedulers

- I/O scheduler’s job
 - Improve overall disk throughput
 - Merging requests to reduce the number of requests
 - Reordering and sorting requests to reduce disk seek time
 - Prevent starvation
 - Submit requests before deadline
 - Avoid read starvation by write
 - Provide fairness among different processes
 - Guarantee quality-of-service (QoS) requirement
RAID Structure

- RAID – redundant array of inexpensive disks
 - multiple disk drives provides reliability via redundancy
- Increases the mean time to failure
- Mean time to repair – exposure time when another failure could cause data loss
- Mean time to data loss based on above factors
- If mirrored disks fail independently, consider disk with 100,000 mean time to failure and 10 hour mean time to repair
 - Mean time to data loss is \(\frac{100,000^2}{(2 \times 10)} = 500 \times 10^6 \) hours, or 57,000 years!
- Frequently combined with NVRAM to improve write performance
- Several improvements in disk-use techniques involve the use of multiple disks working cooperatively
RAID Levels (1)

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.
RAID Levels (2)

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.