SSE3044: Operating Systems

Jinkyu Jeong (jinkyu@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Introduction

• Schedule
 – 10:30 – 11:45 (Mon.)
 – 09:00 – 10:15 (Wed.)
 – Lecture room: #400126, Semiconductor Bldg.

• Course homepage
 – http://csl.skku.edu/SSE3044F16/
 – Lecture slides, announcements, exam scores, projects, etc.
 – Don’t waste your time in i-Campus

• TA
 – 이규선, lgs0409@naver.com
 – #85533 in Corporate Collaboration Center
About Me

• Jinkyu Jeong
 – Assistant professor @ SSE Dept.
 – Computer Systems laboratory
 – Research area
 • Operating systems, storage systems, mobile systems, machine virtualization, ...
 – Email: jinkyu@skku.edu
 – URL: http://csl.skku.edu/People/Jinkyu
 – Tel: 031-290-7692
 – Office: Semiconductor bldg. #400626 (6th floor)
 – Office hours: Monday & Wednesday
 – Email contact is preferred
What is OS?

• Computer systems internals
Why Do We Learn OS?

• To graduate?
• To make a better OS or system
 – Functionality
 – Performance/cost
 – Reliability
 – Energy efficiency
• To make a new hardware up and running
• To design OS-aware hardware
• To understand computer systems better
• Just for fun
System Software Track

<table>
<thead>
<tr>
<th>1학년</th>
<th>2학년</th>
<th>3학년</th>
<th>4학년</th>
</tr>
</thead>
<tbody>
<tr>
<td>1학기</td>
<td>2학기</td>
<td>1학기</td>
<td>2학기</td>
</tr>
<tr>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>성균프레시멘 콘赜</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>정의적 공학설계</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>공학전자</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>프로그래밍 기초설습</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>문제해결방법</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>자료구조 및 알고리즘</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>이산수학</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>시스템SW실습1</td>
<td>랜리학</td>
<td>랜리학</td>
<td>랜리학</td>
</tr>
<tr>
<td>공학수학1</td>
<td>공학수학2</td>
<td>공학수학3</td>
<td>공학수학4</td>
</tr>
<tr>
<td>컴퓨터SW</td>
<td>컴퓨터SW</td>
<td>컴퓨터SW</td>
<td>컴퓨터SW</td>
</tr>
<tr>
<td>SW실습</td>
<td>SW실습</td>
<td>SW실습</td>
<td>SW실습</td>
</tr>
<tr>
<td>SW실습</td>
<td>SW실습</td>
<td>SW실습</td>
<td>SW실습</td>
</tr>
<tr>
<td>디지털 시스템설계</td>
<td>디지털 시스템설계</td>
<td>디지털 시스템설계</td>
<td>디지털 시스템설계</td>
</tr>
<tr>
<td>시스템SW실습2</td>
<td>시스템SW실습2</td>
<td>시스템SW실습2</td>
<td>시스템SW실습2</td>
</tr>
<tr>
<td>마이크로 전자화</td>
<td>마이크로 전자화</td>
<td>마이크로 전자화</td>
<td>마이크로 전자화</td>
</tr>
<tr>
<td>SoC 설계</td>
<td>SoC 설계</td>
<td>SoC 설계</td>
<td>SoC 설계</td>
</tr>
<tr>
<td>컴퓨터 시스템 설계</td>
<td>컴퓨터 시스템 설계</td>
<td>컴퓨터 시스템 설계</td>
<td>컴퓨터 시스템 설계</td>
</tr>
<tr>
<td>컴퓨터 네트워크 설계</td>
<td>컴퓨터 네트워크 설계</td>
<td>컴퓨터 네트워크 설계</td>
<td>컴퓨터 네트워크 설계</td>
</tr>
<tr>
<td>임베디드 시스템 설계</td>
<td>임베디드 시스템 설계</td>
<td>임베디드 시스템 설계</td>
<td>임베디드 시스템 설계</td>
</tr>
<tr>
<td>멀티코어 시스템 설계</td>
<td>멀티코어 시스템 설계</td>
<td>멀티코어 시스템 설계</td>
<td>멀티코어 시스템 설계</td>
</tr>
<tr>
<td>컴퓨터 시스템 설계</td>
<td>컴퓨터 시스템 설계</td>
<td>컴퓨터 시스템 설계</td>
<td>컴퓨터 시스템 설계</td>
</tr>
</tbody>
</table>

SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu)
Prerequisites

• Courses
 – Introduction to Computer Systems
 • SSE2030, CSE2003, or SWE2001
 – System Programming Experiment
 • SSE2033, SWE2007, or CSE3044
 – Computer Architecture
 • ICE3003

• Required skills
 – Fluent C programming skills
 – Intel x86 architecture & assembly programming
 – Basic knowledge of Unix/Linux systems
 – Reading a large, complex program
Textbook

• Operating Systems: Three Easy Pieces
 – Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
 – Arpaci-Dusseau Books
 – September 2015 (ver. 0.91)

 – Free Online Book at http://ostep.org
 – Read Remzi's great article at http://from-a-to-remzi.blogspot.kr/2014/01/the-case-for-free-online-books-fobs.html
Why Three Pieces?

"… as Operating Systems are about half as hard as Physics."

A Dialogue on the Book
Chap. 1
Old Textbook

- **Operating System Concepts**
 - 9th Edition
 - Written by A. Silberschatz, P. B. Galvin, and G. Gagne
 - Published by Wiley & Sons Inc.
 - 2014
References (1)

• Operating Systems: Internals and Design Principles (8th ed.)
 – William Stallings
 – Prentice Hall, 2014

• Modern Operating Systems (4th ed)
 – Andrew S. Tanenbaum,
 – Prentice Hall, 2014
References (2)

• For Linux:
 – *Understanding the Linux Kernel* (3rd ed.)
 – D. Bovet and M. Cesati,

• For Windows:
 – *Windows Internals* (6th ed.)
 – Mark E. Russinovich, David A. Solomon, and Alex Ionescu,
 – Microsoft Press, 2012

• For Solaris:
 – *Solaris Internals*
 – Richard McDougall and Jim Mauro
 – Sun Microsystems, 2001
Course Plan

• Lectures
 – General operating system concepts
 – Case study: Linux, xv6

• Hands-on projects
 – Using xv6 instructional OS
Lecture Topics

• Virtualization
 – Processes
 – CPU scheduling
 – Virtual memory

• Concurrency
 – Threads
 – Synchronization

• Persistence
 – Storage
 – File systems
xv6 Project

• An teaching OS developed at MIT
 – Port of the Sixth Edition Unix (v6) in ANSI C
 – Runs on multi-core x86 systems

• What is Pintos?
 – An instructional operating system based on Nachos
 – Developed by Ben Pfaff @ Stanford University
 – A real, bootable OS for 80x86 architecture
 • Run on a regular IBM-compatible PC or an x86 simulator
 – Written in C with minimal assembly code
Project Plan (1)

• Initially, the source tree of xv6 has skeleton codes
 – Do nothing but testing the functionality

• You are supposed to fill in the empty code to provide following features
 – System call & CPU scheduler
 – Virtual memory I (stack)
 – Virtual memory II (copy-on-write)
 – Thread support
 – Synchronization
Project Plan (2)

• Lab session
 – A separate class with the TA (mandatory)
 – Project announcement
 – Q&A
 – Hints & helps
 – Oral tests
 – Code review
Project Schedule

<table>
<thead>
<tr>
<th>Project</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 0 (warming-up)</td>
<td>1 week</td>
</tr>
<tr>
<td>Project 1 (syscall & CPU scheduling)</td>
<td>2.5 weeks</td>
</tr>
<tr>
<td>Project 2 (stack growth)</td>
<td>2.5 weeks</td>
</tr>
<tr>
<td>Project 3 (copy-on-write)</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Project 4 (thread support)</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Project 5 (synchronization)</td>
<td>2 weeks</td>
</tr>
</tbody>
</table>
Class Policies (1)

• Grading policy (subject to change)
 – Class attendance: 10%
 – Exams: 35% (mid-term & final)
 – Projects: 55%
 – Subject to change

• Class attendance policy
 – If you miss any one of the exams, you will fail this course
 – No lateness is allowed
 – Up to four absences will be tolerated
 • There will be a (small) bonus for students who attend all classes
Class Policies (2)

• Cheating policy
 – What is cheating?
 • Copying another student’s solution (or one from the Internet) and submitting it as your own
 • Allowing another student to copy your solution
 – What is NOT cheating?
 • Helping others use systems or tools
 • Helping others with high-level design issues
 • Helping others debug their code
 – Penalty for cheating:
 • Severe penalty on the grade and report to dept. chair
 – Ask helps to your TA if you experience any difficulty
Summary

• This semester will be very tough for you and me
 – Moving to a brand-new textbook and projects

• You are now taking the most challenging course in the software track
 – Lectures will be easy, but projects will not
 – Please make sure if you are ready to take this course

• Keys to success
 – Read textbook exhaustively
 – Think, think, think
 – Begin your project assignments as early as possible
Questions?