Hard Disk Drives (HDDs)

Jinkyu Jeong (jinkyu@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Three Pieces

• Virtualization
 – Virtual CPUs
 – Virtual memory

• Concurrency
 – Threads
 – Synchronization

• Persistence
 – How to make information persist, despite computer crashes, disk failures, or power outages?
 – Storage
 – File systems
Modern System Architecture

- **4 Memory Channels DDR4 / Up to 2400 MHz**
- **PCle* 3.0 Up to 40 Ports**
- **Up to 400 MB/s**
- **6 USB 3.0 Ports**
- **8 USB 2.0 Ports**
- **10 SATA Gen 3 Ports (6 Gb/s) Up to 600 MB/s**
- **“Broadwell” Intel® Xeon® Processor E5-2600 v4 Product Family Up to 22 cores**
- **4.8 GHz 2 Intel® QPI Links**
- **19.2 GB/s per link**
- **Up to 1536 GB**
- **Up to 40 GbE**
- **19.2 GB/s per link**
- **19.2 GB/s per channel**
- **4 Memory Channels DDR4 / Up to 2400 MHz**
- **PCle* 3.0 Up to 40 Ports**
- **1 GB/s per lane**
- **Up to 400 MB/s**
- **x4 DMI 2.0 Up to 2 GB/s**
- **8 PCle* 2.0 Ports**
- **500 MB/s per lane**
- **Intel® Ethernet Controller XL710 Family**
- **Up to 40 GbE**

Intel® C612 Chipset

Platform Controller Hub (PCH)
A Typical I/O Device

- Control: Special instructions (e.g. in & out in x86) vs. memory-mapped I/O (e.g. load & store)
- Data transfer: Programmed I/O (PIO) vs. DMA
- Status check: Polling vs. Interrupts
Classifying I/O Devices

• Block device
 – Stores information in fixed-size blocks, each one with its own address
 – Typically, 512B or 4KB per block
 – Can read or write each block independently
 – Disks, tapes, etc.

• Character device
 – Delivers or accepts a stream of characters
 – Not addressable and no seek operation supported
 – Printers, networks, mouse, keyboard, etc.
I/O Stack

- **User processes**: Make I/O call, format I/O, spooling
- **Device-independent software**: Naming, protection, blocking, buffering, allocation
- **Device drivers**: Set up device registers, check status
- **Interrupt handlers**: Wake up driver when I/O completed
- **Hardware**: Perform I/O operation
Device Drivers

• Device-specific code to control each I/O device
 – Require to define a well-defined model and a standard interface
• Implementation
 – Statically linked with the kernel
 – Selectively loaded into the system during boot time
 – Dynamically loaded into the system during execution (especially for hot pluggable devices)
• Variety is a challenge
 – Many, many devices
 – Each has its own protocol
OS Reliability
OS Reliability and Device Drivers

• Reliability remains a crucial, but unresolved problem
 – 5% of Windows systems crash every day
 – Huge cost of failures: stock exchange, e-commerce, etc.
 – Growing “unmanaged systems”: digital appliances, CE devices

• OS extensions are increasingly prevalent
 – 70% of Linux kernel code
 – Over 35,000 drivers with over 120,000 versions on WinXP
 – Written by less experienced programmer

• Extensions are a leading cause of OS failure
 – Drivers cause 85% of WinXP crashes
 – Drivers are 7 times buggier than the kernel in Linux
Secondary Storage

• Anything that is outside of “primary memory”
 – Does not permit direct execution of instructions or data retrieval via machine load/instructions
 – Abstracted as an array of sectors
 – Each sector is typically 512 bytes or 4096 bytes

• HDD (Hard Disk Drive) Characteristics
 – It’s large: 100 GB or more
 – It’s cheap: 3TB SATA3 hard disk costs 100,000won
 – It’s persistent: data survives power loss
 – It’s slow: milliseconds to access
HDD Architecture

Electromechanical
- Rotating disks
- Arm assembly

Electronics
- Disk controller
- Buffer
- Host interface
A Modern HDD

- Seagate Barracuda ST5000DM000 (5TB)
 - 8 Heads, 4 Discs
 - 63 sectors/track, 16,383 cylinders
 - Avg. track density: 455K TPI (tracks/inch)
 - Avg. areal density: 826 Gbits/sq.inch
 - Spindle speed: 7200 rpm (8.3 ms/rotation)
 - Internal cache buffer: 128 MB
 - Average seek time: < 12.0 ms
 - Max. I/O data transfer rate: 600 MB/s (SATA3)
 - Max. sustained data transfer rate: 160 MB/s
 - Max power-on to ready: < 22.0 sec
HDD Internals

- Our Boeing 747 will fly at the altitude of only a few mm at the speed of approximately 65mph periodically landing and taking off.
- And still the surface of the runway, which consists of a few mm-think layers, will stay intact for years.
Interfacing with HDDs

• Cylinder-Head-Sector (CHS) scheme
 – Each block is addressed by <Cylinder #, Head #, Sector #>
 – The OS needs to know all disk “geometry” parameters

• Logical block addressing (LBA) scheme
 – First introduced in SCSI
 – Disk is abstracted as a logical array of blocks [0, …, N-1]
 – Address a block with a “logical block address (LBA)”
 – Disk maps an LBA to its physical location
 – Physical parameters of a disk are hidden from OS
HDD Performance Factors

• Seek time (T_{seek})
 – Moving the disk arm to the correct cylinder
 – Depends on the cylinder distance (not purely linear cost)
 – Average seek time is roughly one-third of the full seek time

• Rotational delay (T_{rotation})
 – Waiting for the sector to rotate under head
 – Depends on rotations per minute (RPM)
 – 5400, 7200 RPM is common, 10K or 15K RPM for servers

• Transfer time (T_{transfer})
 – Transferring data from surface into disk controller, sending it back to the host
HDD Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>Cheetah 15K.5</th>
<th>Barracuda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>300 GB</td>
<td>1 TB</td>
</tr>
<tr>
<td>RPM</td>
<td>15,000</td>
<td>7,200</td>
</tr>
<tr>
<td>Avg. Seek</td>
<td>4 ms</td>
<td>9 ms</td>
</tr>
<tr>
<td>Max Transfer</td>
<td>125 MB/s</td>
<td>105 MB/s</td>
</tr>
<tr>
<td>Platters</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cache</td>
<td>16MB</td>
<td>16/32 MB</td>
</tr>
<tr>
<td>Interface</td>
<td>SCSI</td>
<td>SATA</td>
</tr>
</tbody>
</table>
| Random Read (4 KB) | $T_{seek} = 4\text{ms}$
$T_{rotation} = 60 / 15000 / 2 = 2\text{ms}$
$T_{transfer} = 4\text{KB} / 125\text{MB} = 32\mu\text{s}$
$R_{I/O} \approx 4\text{KB} / 6\text{ms} = 0.66 \text{MB/s}$ | $T_{seek} = 9\text{ms}$,
$T_{rotation} = 60 / 7200 / 2 = 4.2\text{ms}$
$T_{transfer} = 4\text{KB} / 105\text{MB} = 37\mu\text{s}$
$R_{I/O} \approx 4\text{KB} / 13.2\text{ms} = 0.31 \text{MB/s}$ |
| Sequential Read (100 MB) | $T_{transfer} = 100\text{MB} / 125\text{MB} = 0.8\text{s}$
$R_{I/O} \approx 100\text{MB} / 0.8\text{s} = 125 \text{MB/s}$ | $T_{transfer} = 100\text{MB} / 105\text{MB} = 0.95\text{s}$
$R_{I/O} \approx 100\text{MB} / 0.95\text{s} = 105 \text{MB/s}$ |
Disk Scheduling

• Given a stream of I/O requests, in what order should they be served?
 – Much different than CPU scheduling
 – Seeks are so expensive
 – Position of disk head relative to request position matters more than length of a job

• Work conserving schedulers
 – Always try to do work if there’s work to be done

• Non-work-conserving schedulers
 – Sometimes, it’s better to wait instead if system anticipates another request will arrive
FCFS

• First-Come First-Served (= do nothing)
 – Reasonable when load is low
 – Long waiting times for long request queues
SSTF

- **Shortest Seek Time First**
 - Minimizes arm movement (seek time)
 - Unfairly favors middle blocks
 - May cause starvation

- Nearest-Block-First (NBF) when the drive geometry is not available to the host OS
SCAN

- **SCAN**
 - Service requests in one direction until done, then reverse
 - Skews wait times non-uniformly
 - Favors middle blocks

- **F-SCAN**
 - Freezes the queue when it is doing a sweep
 - Avoids starvation of far-away requests
C-SCAN

- **Circular SCAN**
 - Like SCAN, but only goes in one direction (e.g. typewriter)
 - Uniform wait times

- **SCAN and C-SCAN** are referred to as the “elevator” algorithm
 - Both do not consider rotation
Modern Disk Scheduling

• I/O scheduler in the host OS
 – Improve overall disk throughput
 • Merge requests to reduce the number of requests
 • Sort requests to reduce disk seek time
 – Prevent starvation
 – Provide fairness among different processes

• Disk drive
 – Disk has multiple outstanding requests
 • e.g. SATA NCQ (Native Command Queueing): up to 32 requests
 – Disk schedules requests using its knowledge of head position and track layout
 • e.g. SPTF (Shortest Positioning Time First): consider rotation as well