
SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu)

Processes

Jinkyu Jeong (jinkyu@skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

mailto:jinkyu@skku.edu
http://csl.skku.edu/


SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 2

OS Internals

Hardware

System Call Interface

shell
shell

ls
ps

Hardware Control (Interrupt handling, etc.)

File System
Management

I/O Management
(device drivers)

Memory
Management

Process
Management P

ro
te

ctio
n

Kernel
space

User
space trap

scheduler

IPC

synchronization



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 3

What is a Process?

ÅAn instance of a program in execution

ÅThe basic unit of protection

ÅA process is identified using its process ID 

(PID)

ÅA process includes

ïCPU context (registers)

ïOS resources (address space, open files, etc.)

ïOther information (PID, state, owner, etc.)



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 4

Process vs. Program

Stack

Heap

program

Code

Data

code

data

PC

SP

Memory Disk



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 5

Running a Process

Code

Data

Fetch Iă Mem[PC]

Decode I

Execute I

Update PC

PC

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.materialup.com/posts/cpu-hardware-and-system-info-android-icon&bvm=bv.116274245,d.dGY&psig=AFQjCNGC5jGoH8HZExZNeTZ3mclI-OpbUg&ust=1457274528693271


SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 6

Running Multiple Processes
Code A

Data A

Code C

Data C

Code B

Data B

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.materialup.com/posts/cpu-hardware-and-system-info-android-icon&bvm=bv.116274245,d.dGY&psig=AFQjCNGC5jGoH8HZExZNeTZ3mclI-OpbUg&ust=1457274528693271
https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.materialup.com/posts/cpu-hardware-and-system-info-android-icon&bvm=bv.116274245,d.dGY&psig=AFQjCNGC5jGoH8HZExZNeTZ3mclI-OpbUg&ust=1457274528693271
https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.materialup.com/posts/cpu-hardware-and-system-info-android-icon&bvm=bv.116274245,d.dGY&psig=AFQjCNGC5jGoH8HZExZNeTZ3mclI-OpbUg&ust=1457274528693271


SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 7

Interleaving Multiple Processes

Code A

Data A

Code C

Data C

Code B

Data B

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.materialup.com/posts/cpu-hardware-and-system-info-android-icon&bvm=bv.116274245,d.dGY&psig=AFQjCNGC5jGoH8HZExZNeTZ3mclI-OpbUg&ust=1457274528693271


SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 8

Virtualizing the CPU

Code A

Data A

OS Code

OS Data

Code B

Data B

OS creates the illusion 

that each process has its 

own CPU (and memory)

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.materialup.com/posts/cpu-hardware-and-system-info-android-icon&bvm=bv.116274245,d.dGY&psig=AFQjCNGC5jGoH8HZExZNeTZ3mclI-OpbUg&ust=1457274528693271


SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 9

Example
#include <sys/ types.h >
#include < unistd.h >

int main()
{

int pid ;

if (( pid = fork ()) == 0)
/* child */
printf ƽƧ#ÈÉÌÄ ÏÆ ˧Ä ÉÓ ˧Ä\ ÎƨƗ 

getppid (), getpid ());
else

/* parent */
printf ƽƧ) ÁÍ ˧Äƚ -Ù ÃÈÉÌÄ ÉÓ ˧Ä\ ÎƨƗ 

getpid (), pid );
}



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 10

Example Output

% ./ a.out

I am 31098. My child is 31099.

Child of 31098 is 31099.

% ./ a.out

Child of 31100 is 31101.

I am 31100. My child is 31101.



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 11

Process Hierarchy

ÅParent-child relationship
ïOne process can create another 

process

ïUnix calls the hierarchy a 
“process group”

ïWindows has no concept of 
process hierarchy

ÅBrowsing a list of processes:
ïps in Unix

ïTask Manager (taskmgr) in 
Windows

sh

$ cat file1 | wc

cat wc



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 12

Process Creation

Åfork()
ïCreates a new process cloning the parent process
ÅParent inherits most of resources and privileges: open files, UID, 

etc.
ÅChild also duplicates the parent’s address space

ïParent may either wait for the child to finish (using 
wait() ), or it may continue in parallel

ïShells or GUIs use this system call internally

Åexec()
ïReplaces the current process image with a new program

ïWindows: CreateProcess () = fork() + exec()



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 13

Process Termination

ÅNormal exit (c)

ÅError exit (voluntary)

ÅFatal error (involuntary)
ïSegmentation fault – illegal memory access

ïProtection fault

ïExceed allocated resources, etc.

ÅKilled by another process (involuntary)
ïBy receiving a signal

ÅZombie process: terminated, but not removed 



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 14

Process APIs

Åexit()
ïCaller process terminates its execution 

ïReturn from main() is identical

ïParameter denotes whether this exit is normal (0) or error (1)

Åkill()
ïSend signal to a process

ïParameters are directives to go to sleep, to die, and other useful 
imperatives

Åwait()
ïWait for state changes in any child of the calling process
ÅUsually termination of a child 

ïRelease resources associated with the terminated child

ïwaitpid () for a specific child



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 15

Simplified Shell
int main(void)
{

char cmdline [MAXLINE];
char * argv [MAXARGS];
pid_t pid ;
int status;

while ( getcmd( cmdline , sizeof ( buf )) >= 0) {
parsecmd( cmdline , argv );
if (! builtin_command ( argv )) {

if (( pid = fork ()) == 0) {
if ( execv ( argv [0], argv ) < 0) {

printf ƽƧ˧Óƙ ÃÏÍÍÁÎÄ ÎÏÔ ÆÏÕÎÄ\ ÎƨƗ argv [0]);
exit(0);

}
}
waitpid ( pid , &status, 0);

}
}

}



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 16

Process State Transitions

RunningReady

Scheduled

Time slice exhausted

I/O or event wait

Blocked

I/O or event completion

Created exit



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 17

Process State – Linux Example

Runnable
Sleeping
Traced or 
Stopped
Uninterruptible 
Sleep
Zombie

R:
S:
T: 

D: 

Z:

High-priority task
Low-priority task
Session leader
In the foreground
process group
Multi-threaded 

<:
N: 
s:
+:

l:



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 18

Implementing Processes

ÅPCB (Process Control Block) or Process Descriptor

ïEach PCB represents a process

ïContains all of the information about a process

ÅCPU registers 

ÅPID, PPID, process group, priority, process state, signals

ÅCPU scheduling information

ÅMemory management information

ÅAccounting information

ÅFile management information

ÅI/O status information

ÅCredentials 

ïtask_struct in Linux

Å3248 bytes as of Linux 3.2.0



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 19

Context Switch

ÅThe act of switching CPU from one process to 
another

ÅAdministrative overhead
ïSaving and restoring registers and memory maps

ïFlushing and reloading the memory cache

ïUpdating various tables and lists, etc.

ÅThe overhead depends on hardware support
ïMultiple register sets in UltraSPARC

ïAdvanced memory management techniques may require 
extra data to be switched with each context

Å100s or 1000s of switches/sec typically



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 20

Context Switch – Linux Example
ÅLinux example
ïTotal 1,693,515,228 ticks = 4704 hours = 196 days

ïTotal 4,066,419,922 context switches

ïRoughly 240 context switches / sec



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 21

Performing Context Switch

handle the trap
call switch() routine
save regs(A) to PCB(A)
restore regs(B) from PCB(B)
switch to k-stack(B)
return-from-trap (into B)

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Process A
…

Kernel Hardware Process

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Process B
…



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 22

Process State Queues

ÅThe OS maintains a collection of queues that 

represent the state of all processes in the system

ïReady queue (or run queue)

ïWait queue(s): one queue for each type of event (device, 

timer, message, …)

ÅEach PCB is queued onto a state queue according 

to its current state

ïAs a process changes state, its PCB is migrated between 

the various queues



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 23

Process State Queues

ready queue

disk I/O queue

time slice expired

fork a child

keyboard I/O queue

mutexwait queue

exit
scheduled

disk interrupt

keyboard interrupt

mutexacquired

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.materialup.com/posts/cpu-hardware-and-system-info-android-icon&bvm=bv.116274245,d.dGY&psig=AFQjCNGC5jGoH8HZExZNeTZ3mclI-OpbUg&ust=1457274528693271


SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 24

fork()

ÅImplementing fork()

ïCreates and initializes a new PCB

ïCreates and initializes a new address space

ïInitializes the address space with a copy of the entire 

contents of the address space of the parent

ïInitializes the kernel resources to point to the resources 

used by the parent (e.g. open files)

ïPlaces the new PCB on the ready queue

ïReturns the child’s PID to the parent, and zero to the child

int fork()



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 25

exec()

ÅImplementing exec()
ïWipe the process’ address space and release most of the 

resources allocated to the process

ïLoads the new program “prog ” into the its address space

ï Initializes hardware context and “args ” for the new program

ïexec() does not create a new process

ïWhat does it mean for exec() to return?

ÅVariants
ïexec(): execl(), execle(), execlp(), execv(), and execvp()

int execv (char * prog , char * argv [])



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 26

Inter-Process Communication

ÅCooperating processes need to communicate 

with each other for

ïInformation sharing

ïComputation speedup

ïModularity

ïConvenience

ÅTwo models of IPC

ïShared memory

ïMessage passing



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu)

IPC Models 

ÅMessage passing ÅShared memory



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 28

Policy vs. Mechanism

ÅPolicy

ïWhatshould be done?

ïPolicy decisions must be made for all resource 

allocation and scheduling problems

ïe.g.  What is the next process to run?

ÅMechanism

ïHowto do something?

ïThe tool for implementing a set of policies

ïe.g. How to make multiple processes run at once?



SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) 29

Separating Policy from Mechanism

ÅA key principle in operating system design

ÅPolicies are likely to change depending on 
workloads and also across places or over time

ÅA general mechanism, separated from policy, is 
more desirable

ÅAllows to build a more modular OS

ÅEnables extensible systems – User-specific 
policies?


