
Operating System

Project #4

16. 11. 14

Project Plan

• 5 projects
– Install Xv6

– System call + scheduling

– Virtual memory (stack growth + COW)

– Thread-support

– Concurrency

• Single-handed project

Thread-Support on Xv6

• Xv6 process is single-threaded

• Multithreaded process consists of one or more threads
– Each thread has its own call stack

– Every thread shares code, data, and other resources such as open files

Thread-Support on Xv6

Thread-Support on Xv6 – thread_create()

• Name
thread_create - create a new thread

• Synopsis
int thread_create(void *(*function)(void *), int priority, void *arg, void *stack);

• Description
The thread_create() starts a new thread in the calling process. The new
thread starts execution by invoking function(); arg is passed as the sole
argument of function(). priority is the scheduling priority of the new thread
(0~40). stack is the pointer to call stack of new thread.

• Return value
Return the thread ID(tid) of new thread. tid is guaranteed to be uniqued
within a process. On error, return -1.

Thread-Support on Xv6 – thread_exit()

• Name
thread_exit – terminate calling thread

• Synopsis
void thread_exit(void *retval);

• Description
The thread_exit() terminates calling thread and returns a value via retval that
is available to another thread in the same process that calls thread_join().

• Return value
This function does not return to caller.

Thread-Support on Xv6 – thread_join()

• Name
thread_join – join with a terminated thread

• Synopsis
int thread_join(int tid, void **retval);

• Description
The thread_join() waits for the thread specified by tid to terminate. If that
thread has already terminated, then thread_join() returns immediately.
thread_join() copies exit status of the target thread into the location pointed
by *retval. The call stack of terminated thread should be freed by the calling
thread.

• Return value
On success, return 0. If there is no thread with input tid, return -1.

Thread-Support on Xv6 – gettid()

• Name
gettid – get thread ID

• Synopsis
int gettid(void);

• Description
The gettid() returns thread ID of caller. If the process is a single-threaded
process, thread ID is same as the process ID. In a multi-threaded process, all
threads have same process ID, but each one has a unique thread ID within
a process.

• Return value
Return the thread ID of calling thread.

Thread-Support on Xv6 – getpid()

• Name
getpid – get process identification

• Synopsis
int getpid(void);

• Description
The getpid() returns process ID of caller. On multi-threaded process, every
thread of the same process returns same process ID.

• Return value
Return the process ID of calling process.

Thread-Support on Xv6

• If the main thread terminates or any thread calls exit(), whole
process is terminated. In this case, all the threads should be
terminated as well. Also, address space should be freed and
open files should be closed.

• Open files are shared among threads. If thread A opens a file,
the file can be also accessed by another thread B (in the same
process) using same file descriptor. Files opened by thread A
need not be closed automatically when thread A terminates.

Thread-Support on Xv6

• When a thread calls thread_exit(), the thread remains in zombie
state until another thread calls thread_join().

• There is no parent-child relationship among thread. Any thread
can invoke thread_join() for another thread.

• All threads within a process should return the same process ID.
Thread IDs are guaranteed to be unique only within a process.

• Maximum number of threads per process is limited to 8
(including main thread). (param.h → NTHREAD)

Project #4 – Thread-Support

• Implement following system calls in xv6
– thread_create()

– thread_exit()

– thread_join()

– gettid()

• Modify following system call to support threads
– getpid()

• Implement priority scheduler that supports threads

Project #4 – Thread-Support

• Implement thread-support in xv6

• Submit a tar.gz file

• Send email to T.A
– [SSE3044]Project#4-YOURID-YOURNAME

• ex) [SSE3044]Project#4-2016710580-leegyusun

– Email address : lgs0409@naver.com

• Due date
– 2016-11-27(Sun) PM 23:59

– -10% per day (until 11/30)

