Introduction

• Schedule
 – 13:30 – 14:45 (Tuesday)
 – 12:00 – 13:15 (Thursday)
 – Lecture room: #400118, Semiconductor Bldg.

• Course homepage
 – Lecture slides, announcements, exam scores, projects, etc.
 – Don’t waste your time in i-Campus
About Me

• Jinkyu Jeong
 – Assistant professor @ SSE and SW Dept.
 – Computer Systems laboratory
 – Research area
 • Operating systems, storage systems, mobile systems, machine virtualization, …
 – Email: jinkyu@skku.edu
 – URL: http://csl.skku.edu/People/Jinkyu
 – Tel: 031-290-7692
 – Office: Semiconductor bldg. #400510 (5th floor)
 – Office hours: Monday & Wednesday
 – Email contact is preferred
(Awesome) TAs

• Gyusun Lee (이규선)
 – Email: lgs0409@naver.com
 – Office: #400509 in Semiconductor Bldg.

• Wonsuk Song (송원석)
 – Email: wonsuky@gmail.com
 – Office: #400509 in Semiconductor Bldg.
What is OS?

- Computer systems internals
Why Do We Learn OS?

• To graduate?
• To make a better OS or system
 – Functionality
 – Performance/cost
 – Reliability
 – Energy efficiency
• To make a new hardware up and running
• To design OS-aware hardware
• To understand computer systems better
• Just for fun
System Software Track (2019~)
Prerequisites

• **Mandatory courses**
 - Introduction to Computer Systems
 – SSE2030, CSE2003, or SWE2001
 - System (Unix) Programming
 – SSE2033, SWE2007, ICE2015, or CSE3044
 - Computer Architecture
 – ICE3003, SWE3005, or EEE3050

• **Required skills**
 – Fluent C programming skills
 – Intel x86 architecture & assembly programming
 – Basic knowledge of Unix/Linux systems
 – Reading a large, complex program
Textbook

• Operating Systems: Three Easy Pieces
 – Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
 – Arpaci-Dusseau Books
 – September 2015 (ver. 0.91)

 – Free Online Book at http://ostep.org
 – Read Remzi's great article at http://from-a-to-remzi.blogspot.kr/2014/01/the-case-for-free-online-books-fobs.html
Why Three Pieces?

"… as Operating Systems are about half as hard as Physics."

A Dialogue on the Book Chap. 1
Old Textbook

• **Operating System Concepts**
 – 9th Edition
 – Written by A. Silberschatz, P. B. Galvin and G. Gagne
 – Published by Wiley & Sons Inc.
 – 2014
References (1)

• Operating Systems: Internals and Design Principles (8th ed.)
 – William Stallings
 – Prentice Hall, 2014

• Modern Operating Systems (4th ed)
 – Andrew S. Tanenbaum,
 – Prentice Hall, 2014
References (2)

• For Linux:
 – *Understanding the Linux Kernel* (3rd ed.)
 – D. Bovet and M. Cesati,

• For Windows:
 – *Windows Internals* (6th ed.)
 – Mark E. Russinovich, David A. Solomon, and Alex Ionescu,
 – Microsoft Press, 2012

• For Solaris:
 – *Solaris Internals*
 – Richard McDougall and Jim Mauro
 – Sun Microsystems, 2001
Course Plan

• Lectures
 – General operating system concepts
 – Case study: Linux, xv6

• Hands-on projects
 – Using xv6 instructional OS
Lecture Topics

• Virtualization
 – Processes
 – CPU scheduling
 – Virtual memory

• Concurrency
 – Threads
 – Synchronization

• Persistence
 – Storage
 – File systems
xv6 Project

• A teaching OS developed by MIT
 – Port of the Sixth Edition Unix (v6) in ANSI C
 – Runs on multi-core x86 systems

• Why moving on to xv6 (from Pintos)
 – Code inherited from a real, historical OS!
 – Includes working user-level programs and libraries
 – Easier to install on modern Linux systems
 – Easier to extend
 – Easier to understand modern OSes such as Linux
Project Plan (1)

• Initially, the source tree of xv6 has skeleton codes
 – Do nothing but testing the functionality
• You are supposed to fill in the empty code to provide following features
• We are preparing 4~5 projects
• This semester will be tough
 – We are planning new projects (not reusing the projects in the previous semesters)
Project Plan (2)

• Weekly Lab session
 – A separate class with the TA (mandatory)
 – Project announcement
 – Q&A
 – Hints & helps
 – Oral tests
 – Code review
 – …
Project Plan (3)

- Project topics
 - Project 0: booting (2nd week, 1 week)
 - Project 1: system call (3rd week, 2 weeks)
 - Project 2: CPU scheduling (5th week, 2 weeks)
 - Project 3: virtual memory (7th week, 3 weeks)
 - Project 4: page replacement (10th week, 3 weeks)
 - Project 5: file systems (13th week, 2 weeks)

- Subject to change
Class Policies (I)

• Grading system
 – Class attendance: 10%
 – Exams: 35%
 • Midterm: 15%
 • Final: 20%
 – Projects: 55%
 – Subject to change

• Class attendance policy
 – If you miss any one of the exams, you will fail this course
 – No lateness is allowed
 – Up to four absences will be tolerated
Class Policies (3)

• Cheating policy
 – What is cheating?
 • Copying another student’s solution (or one from the Internet) and submitting it as your own
 • Allowing another student to copy your solution
 – What is NOT cheating?
 • Helping others use systems or tools
 • Helping others with high-level design issues
 • Helping others debug their code
 – Penalty for cheating:
 • Severe penalty on the grade and report to dept. chair
 – Ask helps to your TA if you experience any difficulty
Summary

• You are now taking the most challenging course in the system software track

• This semester will be very tough!

• Keys to success
 – Read textbook exhaustively
 – Think, think, think
 – Begin your project assignments as early as possible
Questions?