Principles of Parallel Algorithm Design (2)

Jinkyu Jeong (jinkyu@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Topics

- **Introduction to Parallel Algorithms**
 - Tasks and Decomposition
 - Processes and Mapping
 - Processes vs. Processors

- **Decomposition Techniques**
 - Recursive Decomposition
 - Data Decomposition
 - Exploratory Decomposition
 - Hybrid Decomposition

- **Characteristics of Tasks and Interactions**
 - Task Generation, Granularity, and Context
 - Characteristics of Task Interactions.
Topics – con’t

- **Mapping Techniques for Load Balancing**
 - Static and Dynamic Mapping

- **Methods for Minimizing Interaction Overheads**
 - Maximizing Data Locality
 - Minimizing Contention and Hot-Spots
 - Overlapping Communication and Computations
 - Replication vs. Communication
 - Group Communications vs. Point-to-Point Communication

- **Parallel Algorithm Design Models**
 - Data-Parallel, Work-Pool, Task Graph, Master-Slave, Pipeline, and Hybrid Models
Characteristics of Tasks

- **Tasks**
 - Pieces of work decomposed

- **Key characteristics**
 - Task generation
 - Task sizes
 - Size of data associated with tasks

- **Critically impact choice and performance of parallel algorithms**
Task Generation

- **Static task generation**
 - Tasks can be identified a-priori
 - Typically decompose using data or recursive decomposition techniques
 - Matrix operations
 - Graph algorithms
 - Image processing applications
 - Other regularly structured problems

- **Dynamic task generation**
 - Tasks are generated as computation performed
 - Typically decompose using exploratory or speculative decompositions
 - Game playing
 - 15 puzzle
Task Sizes

- **Uniform**
 - Example: matrix-vector multiplication

- **Non-uniform**
 - Task sizes can be determined a-priori
 - Or not
 - Examples
 - In quicksort, size of each partition depends on pivot selected
 - In 15-puzzle, sizes of tasks are unknown
Data associated with a task may be small or large compared to computation

- Example
 - 15 puzzle: size(input) < size(computation)
 - Min: size(input) = size(computation) > size(output)
 - Qsort: size(input) = size(output) < size(computation)

Implications

- Small data: task can migrate to other processes easily and dynamically
- Large data: ties the task to a process
 - Avoids excessive communication of task contexts
Characteristics of Task Interactions

- **Different dimensions of task interactions**
 - Static vs. dynamic
 - Regular vs. irregular
 - Read-only vs. read-write
 - One-sided vs. two-sided
Characteristics of Task Interactions

- **Static interactions**
 - The tasks and their interactions are known a-priori
 - Simpler to code

- **Dynamic interactions**
 - Timing or interacting tasks cannot be determined a-priori
 - Harder to code
 - Especially, using message passing APIs.
Characteristics of Task Interactions

- **Regular interactions**
 - Having a definite pattern (in the graph sense) to the interactions
 - Regular interactions can be exploited for efficient implementation
 - Schedule tasks to avoid conflicts

- **Irregular interactions**
 - Lack well-defined topologies
 - Modeled by graphs
Static Regular Interaction Pattern

- **Example: image dithering**
 - Pixel values on edges should be passed to adjacent tasks
 - Location of data to be sent to other tasks is deterministic regardless of input

```
Static Regular Interaction Pattern

- **Example: image dithering**
  - Pixel values on edges should be passed to adjacent tasks
    - Location of data to be sent to other tasks is deterministic regardless of input

  ![Diagram](image)
```

SSE3054: Multicore Systems | Spring 2016 | Jinkyu Jeong (jinkyu@skku.edu)
Static Irregular Interaction Pattern

- Example: sparse matrix-vector multiplication
 - Interaction pattern varies depending on the input matrix

(a)

(b)

\[\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\end{array} \]

\[\begin{array}{c}
\text{Task 0} \\
\text{Task 11} \\
\end{array} \]

\[\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\end{array} \]

\[\begin{array}{c}
\text{Task 0} \\
\text{Task 11} \\
\end{array} \]
Characteristics of Task Interactions

- **Read-only interactions**
 - Tasks just read data associated with other tasks

- **Read-write interactions**
 - Tasks read, as well as modify data associated with other tasks
 - Harder to code
 - Requiring additional synchronization primitives
Characteristics of Task Interactions

- **One-way interaction**
 - Initiated and accomplished by one of the two interacting tasks
 - Read or write
 - Get or put
 - Somewhat harder to code in message passing APIs

- **Two-way interaction**
 - Requiring participation from both tasks involved in an interaction
 - Send and recv in message passing APIs
Mapping Techniques

- Decomposed concurrent tasks should be mapped to processes
 - Then, those can be executed on a parallel platform

- Mapping overheads
 - Communication
 - Idling (or serialization)

- Minimizing these overheads often represents contradicting objectives.
 - Assigning all work to one processor
 - No communication but significant idling
 - Minimizing serialization
 - Introducing communications trivially minimizes communication at the expense of significant idling
Mapping Techniques for Minimum Idleing

- Mapping must simultaneously minimize idling and load balance
- Merely balancing load does not minimize idling
 - Two cases are balanced in loads, but (b) shows much idling
Mapping Techniques for Minimum Idling

- **Static Mapping**
 - Tasks are mapped to processes a-priori
 - Requirements
 - A good estimate of the size of each task
 - Even in these cases, optimal mapping may be NP complete
 » E.g., multiple knapsack problem

- **Dynamic Mapping**
 - Tasks are mapped to processes at runtime
 - Tasks are generated at runtime
 - Their sizes are not known

- **Other factors influencing choice of mapping**
 - Size of data associated with a task
 - Nature of underlying domain
Schemes for Static Mapping

- Mappings based on data partitioning
 - Block distribution
 - (Block-)cyclic distribution
 - Randomized block distribution
 - Graph partitioning

- Mappings based on task partitioning

- Hybrid (or hierarchical) mappings
Mappings Based on Data Partitioning

- Data partitioning + owner-computes rule
- Example: 1-D block distribution for dense matrices

row-wise distribution

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
<th>P_7</th>
</tr>
</thead>
</table>

column-wise distribution

| | P_0 | P_1 | P_2 | P_3 | P_4 | P_5 | P_6 | P_7 |
Block Array Distribution Schemes

- **Multi-dimensional block distributions**
 - More tasks and data partitions \rightarrow higher degree of concurrency can be possible

<table>
<thead>
<tr>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_4</td>
<td>P_5</td>
<td>P_6</td>
<td>P_7</td>
</tr>
<tr>
<td>P_8</td>
<td>P_9</td>
<td>P_{10}</td>
<td>P_{11}</td>
</tr>
<tr>
<td>P_{12}</td>
<td>P_{13}</td>
<td>P_{14}</td>
<td>P_{15}</td>
</tr>
</tbody>
</table>
Block Array Distribution Schemes: Examples

- Multiplying two dense matrices $C = A \times B$
 - Partition the output matrix C using a block decomposition.

- Give each task the same number of elements of C
 - Each element of C corresponds to a single dot product

- Precise decomposition (1-D or 2-D) is determined by the associated communication overhead

- In general, higher dimension decomposition allows the use of larger number of processes
Data Sharing in Dense Matrix Multiplication

\[
\begin{align*}
\text{Required memory} & = \frac{2n^2}{p} + n^2 \\
& = \frac{2n}{\sqrt{p}} + \frac{n^2}{p}
\end{align*}
\]
Cyclic and Block Cyclic Distributions

- If the amount of computation associated with data items varies
 - A block decomposition may lead to significant load imbalances

- A simple example of this is in LU decomposition (or Gaussian Elimination) of dense matrices
LU Factorization of a Dense Matrix

- A decomposition of LU factorization into 14 tasks

\[
\begin{pmatrix}
A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,1} & A_{3,2} & A_{3,3}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
L_{1,1} & 0 & 0 \\
L_{2,1} & L_{2,2} & 0 \\
L_{3,1} & L_{3,2} & L_{3,3}
\end{pmatrix}
\cdot
\begin{pmatrix}
U_{1,1} & U_{1,2} & U_{1,3} \\
0 & U_{2,2} & U_{2,3} \\
0 & 0 & U_{3,3}
\end{pmatrix}
\]

1: \(A_{1,1} \rightarrow L_{1,1}U_{1,1} \)
2: \(L_{2,1} = A_{2,1}U_{1,1}^{-1} \)
3: \(L_{3,1} = A_{3,1}U_{1,1}^{-1} \)
4: \(U_{1,2} = L_{1,1}^{-1}A_{1,2} \)
5: \(U_{1,3} = L_{1,1}^{-1}A_{1,3} \)
6: \(A_{2,2} = A_{2,2} - L_{2,1}U_{1,2} \)
7: \(A_{3,2} = A_{3,2} - L_{3,1}U_{1,2} \)
8: \(A_{2,3} = A_{2,3} - L_{2,1}U_{1,3} \)
9: \(A_{3,3} = A_{3,3} - L_{3,1}U_{1,3} \)
10: \(A_{2,2} \rightarrow L_{2,2}U_{2,2} \)
11: \(L_{3,2} = A_{3,2}U_{2,2}^{-1} \)
12: \(U_{2,3} = L_{2,2}^{-1}A_{2,3} \)
13: \(A_{3,3} = A_{3,3} - L_{3,2}U_{2,3} \)
14: \(A_{3,3} \rightarrow L_{3,3}U_{3,3} \)
LU Factorization of a Dense Matrix

- Block distribution causes load imbalance (or idling)

<table>
<thead>
<tr>
<th>P₀</th>
<th>P₃</th>
<th>P₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>T₄</td>
<td>T₅</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P₁</th>
<th>P₄</th>
<th>P₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₂</td>
<td>T₆</td>
<td>T₈</td>
</tr>
<tr>
<td></td>
<td>T₁₀</td>
<td>T₁₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P₂</th>
<th>P₅</th>
<th>P₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₃</td>
<td>T₇</td>
<td>T₉</td>
</tr>
<tr>
<td></td>
<td>T₁₁</td>
<td>T₁₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T₁₄</td>
</tr>
</tbody>
</table>
Block-Cyclic Distributions

• **Variation of the block distribution**
 • Alleviate the load-imbalance and idling problems.

• **Steps**
 • Partition an array into many more blocks than the number of available processes
 • Assign blocks to processes in a round-robin manner
 – Each process gets several non-adjacent blocks
Block-Cyclic Distributions

- A cyclic distribution is a special case in which block size is one.
- A block distribution is a special case in which block size is n/p.
 - n is the dimension of the matrix and p is the number of processes.
Randomized Block Distribution

- Sometimes, block-cyclic distribution causes load imbalance
 - Example: sparse matrix-vector multiplication
 - Diagonal processes are overloaded

![Sparse matrix](image1.png)

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_4</td>
<td>P_5</td>
<td>P_6</td>
<td>P_7</td>
<td>P_4</td>
<td>P_5</td>
<td>P_6</td>
<td>P_7</td>
</tr>
<tr>
<td>P_8</td>
<td>P_9</td>
<td>P_{10}</td>
<td>P_{11}</td>
<td>P_8</td>
<td>P_9</td>
<td>P_{10}</td>
<td>P_{11}</td>
</tr>
<tr>
<td>P_{12}</td>
<td>P_{13}</td>
<td>P_{14}</td>
<td>P_{15}</td>
<td>P_{12}</td>
<td>P_{13}</td>
<td>P_{14}</td>
<td>P_{15}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_4</td>
<td>P_5</td>
<td>P_6</td>
<td>P_7</td>
<td>P_4</td>
<td>P_5</td>
<td>P_6</td>
<td>P_7</td>
<td></td>
</tr>
<tr>
<td>P_8</td>
<td>P_9</td>
<td>P_{10}</td>
<td>P_{11}</td>
<td>P_8</td>
<td>P_9</td>
<td>P_{10}</td>
<td>P_{11}</td>
<td></td>
</tr>
<tr>
<td>P_{12}</td>
<td>P_{13}</td>
<td>P_{14}</td>
<td>P_{15}</td>
<td>P_{12}</td>
<td>P_{13}</td>
<td>P_{14}</td>
<td>P_{15}</td>
<td></td>
</tr>
</tbody>
</table>

Block-cyclic distribution
Randomized Block Distribution

- **Solution**
 - Randomize tasks
 - Then, block-cyclic or block distribution

Sparse matrix
Randomized
2D block distribution
Decomposition by Graph Partitioning

- **In case of sparse data structures, block decompositions are more complex**
 - Ex) physical phenomena simulation
 - Interaction is data dependent and irregular
 - Data is represented using graph

- **(Task interaction) graph of data structures is a useful indicator**
 - Work is number of nodes
 - Communication is the degree of each node

- **Partition the graph**
 - Assign equal number of nodes to each process
 - Balance work
 - Minimize edge count of the graph partition
 - Minimize communication
Partitioning the Graph of Lake Superior

Random Partitioning

Partitioning for minimum edge-cut.
Mappings Based on Task Partitioning

- Partitioning a given task-dependency graph
 - When task-dependency graph is static
 - When task sizes are known
- Optimal mapping for a general task-dependency graph
 - NP-complete problem
- Excellent heuristics exist for structured graphs
Mapping a Sparse Graph

- Task partitioning and mapping based on 1D block distribution

17 communications

C0 = (4,5,6,7,8)

C1 = (0,1,2,3,8,9,10,11)

C2 = (0,4,5,6)
Mapping a Sparse Graph

- Task partitioning and mapping based on the task interaction graph

13 communications

C0 = (1, 2, 6, 9)
C1 = (0, 5, 6)
C2 = (1, 2, 4, 5, 7, 8)
Hierarchical Mappings

- Sometimes a single mapping technique is inadequate
 - For example, the task mapping of the binary tree (quicksort) cannot use a large number of processors

- Hierarchical mappings
 - Use a task mapping at the top level
 - Data partitioning within each task

[Diagram showing basic and hierarchical task mappings]
Schemes for Dynamic Mapping

- **Dynamic mapping (or dynamic load balancing)**
 - Load balancing is the primary motivation for dynamic mapping.

- **Styles**
 - Centralized vs. distributed
Centralized Dynamic Mapping

- **Processes = masters or slaves**
- **General strategy**
 - When a slave runs out of work, it requests the master for more work
- **Challenge**
 - Master may become bottleneck for large number of processes
- **Approach**
 - Chunk scheduling
 - a process picks up a number of tasks (a chunk) at one time
 - Selecting large chunk sizes may lead to significant load imbalances as well
 - gradually decrease chunk size as the computation progresses
Distributed Dynamic Mapping

- Each process can send or receive work from other processes.
 - Avoids bottleneck in centralized schemes

- Four critical questions
 - How are sending and receiving processes paired together?
 - Who initiates work transfer?
 - How much work is transferred?
 - When is a transfer triggered?

- Answers are generally application-specific
Topics – con’t

- Mapping Techniques for Load Balancing
 - Static and Dynamic Mapping
- Methods for Minimizing Interaction Overheads
- Parallel Algorithm Design Models
Minimizing Interaction Overheads (1)

- **Maximize data locality**
 - Where possible, reuse intermediate data
 - Restructure computation to reuse data promptly

- **Minimize volume of data exchange**
 - Minimize the volume of data communicated by carefully partitioning task interaction graph

- **Minimize frequency of interactions**
 - Try to merge multiple interactions to one, where possible

- **Minimize contention and hot-spots**
 - Use decentralized techniques
 - Replicate data where necessary
Example: Minimizing Interaction Overheads (1)

- Minimize contention and hot-spots
 - Example: dense matrix multiplication
 - Matrices are split into 16 pieces \((A_{i,j}, B_{i,j}, C_{i,j})\)
 - 2D block distribution
 » P0, P1, P2 and P3 will contend on \(A_{0,*}\) at the same time

- Solution: rotate the access sequence of \(A_{0,*}\) in each process
 » P0 begins on \(A_{0,0}\) while P1 begins on \(A_{0,1}, \ldots\)
Minimizing Interaction Overheads (2)

- Overlapping computations with interactions
 - Non-blocking communications
 - E.g., non-blocking send in MPI
 - Multithreading
 - Prefetching

- Replicating data or computations

- Using group communications instead of point-to-point primitives

- Overlap interactions with other interactions
Minimizing Interaction Overheads (3)

- Overlap interactions with other interactions

 • Example: broadcast interaction

 ![Diagram showing efficient and naive broadcasts](image)

 (a) Efficient broadcast
 (b) A naïve broadcast
 (c) Overlapping four naïve broadcasts
Topics – con’t

- Mapping Techniques for Load Balancing
 - Static and Dynamic Mapping
- Methods for Minimizing Interaction Overheads
- Parallel Algorithm Design Models
Parallel Algorithm Models (1)

- A way of structuring a parallel algorithm
 - Decomposition
 - Mapping technique
 - Applying strategies to minimize interactions
Parallel Algorithm Models (2)

- **Data parallel model**
 - Tasks are statically (or semi-statically) mapped to processes
 - Each task performs similar operations on different data

- **Task graph model**
 - Use a task dependency graph and its interrelationships
 - to promote locality or to reduce interaction costs

- **Work pool model**
 - Dynamic mapping of tasks onto processes
 - Centralized/decentralized pool of tasks
 - Static or dynamic tasks
Parallel Algorithm Models (3)

- **Master-slave model**
 - One or more processes generate work
 - Allocate it to worker processes
 - Allocation may be static or dynamic.

- **Pipeline / producer-consumer model**
 - Pass a stream of data through a succession of processes
 - Each performs some task on it

- **Hybrid model**
 - Multiple models applied hierarchically
 - Or, multiple models applied sequentially to different phases
References

- “COMP422: Parallel Computing” by Prof. John Mellor-Crummey at Rice Univ.