Principles of Parallel Algorithm Design

(1)

Jinkyu Jeong (jinkyu@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Parallel Algorithm

• To solve a problem on multiple processors
• Typical parallel algorithm design
 – Identifying portions of work can be performed concurrently
 – Mapping concurrent pieces of work onto multiple processes running in parallel
 – Distributing input, output and intermediate data
 – Managing accesses to data shared by multiple processors
 – Synchronizing processors at various stages
• Some steps can be changed or omitted
Topics

• Introduction to Parallel Algorithms
 – Tasks and Decomposition
 – Processes and Mapping
 – Processes vs. Processors

• Decomposition Techniques
 – Recursive Decomposition
 – Data Decomposition
 – Exploratory Decomposition
 – Speculative Decomposition
 – Hybrid Decomposition

• Characteristics of Tasks and Interactions
 – Task Generation, Granularity, and Context
 – Characteristics of Task Interactions.
Topics – con’t

• Mapping Techniques for Load Balancing
 – Static and Dynamic Mapping

• Methods for Minimizing Interaction Overheads
 – Maximizing Data Locality
 – Minimizing Contention and Hot-Spots
 – Overlapping Communication and Computations
 – Replication vs. Communication
 – Group Communications vs. Point-to-Point Communication

• Parallel Algorithm Design Models
 – Data-Parallel, Work-Pool, Task Graph, Master-Slave, Pipeline, and Hybrid Models
Work Decomposition

- The first step in developing a parallel algorithm
- Divide work into tasks that can run concurrently
- Many different ways of decomposition
- Tasks may be same, different, or even indeterminate sizes
- Tasks can be independent or dependent
Task Dependency Graph

• In most cases, there are dependencies between different tasks
 – Certain tasks can only start once some other tasks have finished
 • Ex) producer-consumer relationship

• Task dependency can be drawn using directed acyclic graph (DAG)
 – Node: task
 – Weight of a node: size (load) of a task
 – Edge: control dependency between tasks
Example: Dense Matrix-Vector Multiplication

- Computing each element of output vector y is independent
- Easy to decompose \rightarrow one task per element in y
- Observations
 - Tasks share b
 - No control dependency between tasks
 - Task size is uniform
Example: Database Query Processing

- Consider the execution of the query:
 - \text{MODEL} = \text{``CIVIC'' AND YEAR = 2001 AND (COLOR = \text{``GREEN'' OR COLOR = \text{``WHITE''})}}

on the following database:

<table>
<thead>
<tr>
<th>ID#</th>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Dealer</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4523</td>
<td>Civic</td>
<td>2002</td>
<td>Blue</td>
<td>MN</td>
<td>$18,000</td>
</tr>
<tr>
<td>3476</td>
<td>Corolla</td>
<td>1999</td>
<td>White</td>
<td>IL</td>
<td>$15,000</td>
</tr>
<tr>
<td>7623</td>
<td>Camry</td>
<td>2001</td>
<td>Green</td>
<td>NY</td>
<td>$21,000</td>
</tr>
<tr>
<td>9834</td>
<td>Prius</td>
<td>2001</td>
<td>Green</td>
<td>CA</td>
<td>$18,000</td>
</tr>
<tr>
<td>6734</td>
<td>Civic</td>
<td>2001</td>
<td>White</td>
<td>OR</td>
<td>$17,000</td>
</tr>
<tr>
<td>5342</td>
<td>Altima</td>
<td>2001</td>
<td>Green</td>
<td>FL</td>
<td>$19,000</td>
</tr>
<tr>
<td>3845</td>
<td>Maxima</td>
<td>2001</td>
<td>Blue</td>
<td>NY</td>
<td>$22,000</td>
</tr>
<tr>
<td>8354</td>
<td>Accord</td>
<td>2000</td>
<td>Green</td>
<td>VT</td>
<td>$18,000</td>
</tr>
<tr>
<td>4395</td>
<td>Civic</td>
<td>2001</td>
<td>Red</td>
<td>CA</td>
<td>$17,000</td>
</tr>
<tr>
<td>7352</td>
<td>Civic</td>
<td>2002</td>
<td>Red</td>
<td>WA</td>
<td>$18,000</td>
</tr>
</tbody>
</table>
Example: Database Query Processing

- Task: generating an intermediate table satisfying a particular clause
- Edge: task dependency (output \(\rightarrow\) input)
 - \textsc{Model} = ```CIVIC'' \textbf{AND} \textsc{Year} = 2001
 \textbf{AND} (\textsc{Color} = ```GREEN'' \textbf{OR} \textsc{Color} = ```WHITE'')
Example: Database Query Processing

• A different way of task decomposition
 – `MODEL = "CIVIC" AND YEAR = 2001 AND (COLOR = "GREEN" OR COLOR = "WHITE")`

 Different task decompositions may lead to significant differences with respect to parallel performance
Granularity of Task Decompositions

- **Granularity:** task size
 - The number of tasks determines its granularity
- **Fine-grained decomposition**
 - A large number of tasks
- **Coarse-grained decomposition**
 - A small number of tasks

- Fine-grained decomposition: task per element in y
- Coarse-grained decomposition: task per 3 elements in y
Degree of Concurrency

• Definition: number of tasks that can run in parallel
• May change over program execution
• Two metrics
 – Maximum degree of concurrency
 • Largest number of concurrent tasks
 – Average degree of concurrency
 • Average number of concurrent tasks
• Finer task granularity → larger degree of concurrency
• Coarser task granularity → smaller degree of concurrency
Critical Path Length

- Edges in task dependency graph serializes tasks
- Critical path: the longest weighted path in task dependency graph
- Critical path length bounds parallel execution time
Critical Path Length

- Example: database query processing task dependency graphs

- Critical path?
- What is the shortest parallel execution time?
- How many processors are needed?
- Maximum degree of concurrency?
- Average degree of concurrency?

Number in each node is load of each task
Critical Path Length

- Example: dense matrix-vector multiplication

- Task dependency graph?
- Critical path?
- What is the shortest parallel execution time?
- How many processors are needed?
- Maximum degree of concurrency?
- Average degree of concurrency?
Limits on Parallel Performance

• Factors affecting parallel execution time
 – Minimum task granularity
 • Dense matrix-vector multiplication $\rightarrow n^2$ tasks
 – Dependencies between tasks
 – Communication overheads
 • Communication between concurrent tasks

• Measures of parallel performance
 – Speedup $= T_I / T_p$
 – Efficiency $= T_I / (p T_p)$
Task Interaction Graph

- Tasks generally exchange data with others
 - Example: database query processing
 - Output is passed to other task as input
 - Example: dense matrix-vector multiplication
 - If vector \(b \) is not replicated, tasks need to communicate elements of the vector

- Task interaction graph
 - Node: task
 - Edge: interaction or data exchange

- Task interaction graphs \(\rightarrow \) data dependencies
- Task dependency graphs \(\rightarrow \) control dependencies
Task Interaction Graph: Example

- **Sparse matrix-vector multiplication**
 - Task per element of the result vector
 - Only non-zero elements of matrix A participate
 - If vector b is also partitioned across tasks
 - Tasks should communicate to pass elements in b
 - No control dependency between tasks though
Task Interaction Graphs, Granularity, & Communication

- Finer task granularity increases associate overhead
- Example: sparse matrix-vector multiplication

- If a task is node 0 → 3 communications + 4 computations
- If a task is node 0, 4, 5 → 5 communications + 15 computations
- Observation: coarser-grain decomposition → smaller communication/computation ratio
Processes and Mapping

- Task: a certain amount of work
- Process (or thread): runnable element on processors
- Generally, # of tasks > # of cores
- Parallel algorithm must map task to processes
- Why processes rather than cores
 - Aggregate tasks into processes
 - Assign a collection tasks and associated data
 - OS maps processes to cores
Processes and Mapping

• Mapping tasks to processes is critical to parallel performance

• Criteria of task-process mapping
 – Task dependency graphs
 • Mapping independent tasks on separate processes
 → Minimum idling and optimal load balancing
 – Task interaction graph
 • Mapping tasks having interactions on the same process
 → Minimum communication
Processes and Mapping

• An appropriate mapping minimizes parallel execution time
 – Mapping independent tasks to different processes
 – Assigning tasks on critical path to processes as soon as possible
 – Minimizing interactions between threads
 • Dense interactions to the same process
 – Criteria often conflict with each other
 • No decomposition makes a single process (no interaction) but no speedup
Processes and Mapping: Example

- Mapping example: database query processing
 - No nodes in a level have dependency
 - Tasks in a single level are assigned to different processes
Decomposition Techniques

• Decomposition
 – A task \rightarrow subtasks (making concurrency)
 – No single recipe that works for all problems

• Commonly used techniques
 – Recursive decomposition
 – Data decomposition
 – Exploratory decomposition
 – Speculative decomposition
Recursive Decomposition

• Suitable to problems that are solved using divide-and-conquer
 – Divide-and-conquer results in natural concurrency

• Steps
 – Decompose a problem into a set of sub-problems
 – Recursively decompose each sub-problem
 – Stop when a desired granularity is reached.
Recursive Decomposition: Quicksort

- Sort a vector
 - Select a pivot
 - Partition the vector into vleft and vright
 - Recursively sort vleft and vright in parallel
Recursive Decomposition: Min

- Sometimes, algorithm should be changed to make concurrency
- Find min in a vector
 - Divide a vector into equal halves
 - Recursively find min in the two vectors until minimum granularity is reached

1. procedure SERIAL_MIN \((A, n)\)
2. begin
3. \(\text{min} = A[0];\)
4. for \(i := 1 \text{ to } n - 1\) do
5. \hspace{1em} if \((A[i] < \text{min}) \text{ min} := A[i];\)
6. endfor;
7. return \text{min};
8. end SERIAL_MIN

1. procedure RECURSIVE_MIN \((A, n)\)
2. begin
3. if \((n = 1)\) then
4. \hspace{1em} \text{min} := A[0];
5. else
6. \hspace{1em} \text{lmin} := RECURSIVE_MIN \((A, n/2)\);
7. \hspace{1em} \text{rmin} := RECURSIVE_MIN \((A[n/2], n - n/2)\);
8. \hspace{1em} if \((\text{lmin} < \text{rmin})\) then
9. \hspace{2em} \text{min} := \text{lmin};
10. \hspace{1em} else
11. \hspace{2em} \text{min} := \text{rmin};
12. endelse;
13. endelse;
14. return \text{min};
15. end RECURSIVE_MIN
Recursive Decomposition: Min

- Example: if vector is \{4, 9, 1, 7, 8, 11, 2, 12\}
- Task dependency graph is
Data Decomposition

• Tasks are decomposed based on data partitioning
 – Computations are mostly independent of each data partition
• Steps
 – Identify the data on which computations are performed
 – Partition this data across various tasks
 • This partitioning induces a decomposition of the problem
• Data can be partitioned in various ways
 – Impacts performance of a parallel algorithm
• Decomposition based on
 – Output data partitioning
 – Input data partitioning
 – Input + output data partitioning
 – Intermediate data partitioning
Decomposition based on Output Data

- Each element of the output can be computed independently
- Partition the output across tasks
- Each task perform the computation for its output
- Example: dense matrix-vector multiplication

\[
\begin{array}{ccc}
A & b & y \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Task 1} & 0 & 1 & n \\
2 & & & \\
n-1 & & & \\
\text{Task n} & & & \\
\end{array}
\]
Decomposition based on Output Data

- \(n \times n \) Matrix multiplication: \(A \times B = C \)
- Tasks are decomposed based on the partition (sub-matrices) of \(C \)

\[
\begin{pmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{pmatrix}
\cdot
\begin{pmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{pmatrix}
\]

Task 1: \(C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} \)

Task 2: \(C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \)

Task 3: \(C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} \)

Task 4: \(C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \)
Decomposition based on Output Data

- Finer-grained partitioning of matrix multiplication
 - Data partitioning \neq task partitioning

<table>
<thead>
<tr>
<th>Decomposition I</th>
<th>Decomposition II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: $C_{1,1} = A_{1,1} B_{1,1}$</td>
<td>Task 1: $C_{1,1} = A_{1,1} B_{1,1}$</td>
</tr>
<tr>
<td>Task 2: $C_{1,1} = C_{1,1} + A_{1,2} B_{2,1}$</td>
<td>Task 2: $C_{1,1} = C_{1,1} + A_{1,2} B_{2,1}$</td>
</tr>
<tr>
<td>Task 3: $C_{1,2} = A_{1,1} B_{1,2}$</td>
<td>Task 3: $C_{1,2} = A_{1,2} B_{2,2}$</td>
</tr>
<tr>
<td>Task 4: $C_{1,2} = C_{1,2} + A_{1,2} B_{2,2}$</td>
<td>Task 4: $C_{1,2} = C_{1,2} + A_{1,1} B_{1,2}$</td>
</tr>
<tr>
<td>Task 5: $C_{2,1} = A_{2,1} B_{1,1}$</td>
<td>Task 5: $C_{2,1} = A_{2,2} B_{2,1}$</td>
</tr>
<tr>
<td>Task 6: $C_{2,1} = C_{2,1} + A_{2,2} B_{2,1}$</td>
<td>Task 6: $C_{2,1} = C_{2,1} + A_{2,1} B_{1,1}$</td>
</tr>
<tr>
<td>Task 7: $C_{2,2} = A_{2,1} B_{1,2}$</td>
<td>Task 7: $C_{2,2} = A_{2,1} B_{1,2}$</td>
</tr>
<tr>
<td>Task 8: $C_{2,2} = C_{2,2} + A_{2,2} B_{2,2}$</td>
<td>Task 8: $C_{2,2} = C_{2,2} + A_{2,2} B_{2,2}$</td>
</tr>
</tbody>
</table>
Decomposition based on Output Data

- Example: count the frequency of item sets in database transactions
 - Partition computations by partitioning item sets
 - Each task computes total counts for each item set
Decomposition Based on Input Data

• Output data decomposition is for
 – Output can be naturally computed as a function of input
 – In many algorithms, it is not possible to partition output data
 • Ex) sum of a large integer array

• Decomposition based on input data
 – Partition input data
 – Computation for each input data
 – “Follow-up computation” to combine the results
Decomposition Based on Input Data

- Example: count the frequency of item sets in database transactions

- Partition computations by partitioning the input transactions
 - A task computes a local count
 - Aggregate local counts to produce total count
Decomposition based on Input & Output Data

- Partition tasks based on input and output data for higher degree of concurrency
- Example: count the frequency of item sets in database transactions

![Diagram showing decomposition based on input and output data with examples of task 1, 2, 3, and 4.](image-url)
Intermediate Data Partitioning

- Computation
 - A sequence of transformation from the input to the output data.
 - Input data \rightarrow intermediate data \rightarrow output data

- Partitioning intermediate data for higher concurrency

- Sometimes, algorithm should be restructured

Example: dense matrix multiplication

$$
\begin{pmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{pmatrix}
\cdot
\begin{pmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{pmatrix}
$$
Intermediate Data Partitioning

- Example: dense matrix multiplication
 - Decomposition of intermediate data yields 8 + 4 tasks

Stage I

\[
\begin{pmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{pmatrix}
\cdot
\begin{pmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
D_{1,1,1} & D_{1,1,2} \\
D_{1,2,1} & D_{1,2,2} \\
D_{2,1,1} & D_{2,1,2} \\
D_{2,2,1} & D_{2,2,2}
\end{pmatrix}
\]

Stage II

\[
\begin{pmatrix}
D_{1,1,1} & D_{1,1,2} \\
D_{1,2,1} & D_{1,2,2}
\end{pmatrix}
+ \begin{pmatrix}
D_{2,1,1} & D_{2,1,2} \\
D_{2,2,1} & D_{2,2,2}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{pmatrix}
\]

Task 01: \(D_{1,1,1} = A_{1,1} B_{1,1}\) Task 02: \(D_{2,1,1} = A_{1,2} B_{2,1}\)
Task 03: \(D_{1,1,2} = A_{1,1} B_{1,2}\) Task 04: \(D_{2,1,2} = A_{1,2} B_{2,2}\)
Task 05: \(D_{1,2,1} = A_{2,1} B_{1,1}\) Task 06: \(D_{2,2,1} = A_{2,2} B_{2,1}\)
Task 07: \(D_{1,2,2} = A_{2,1} B_{1,2}\) Task 08: \(D_{2,2,2} = A_{2,2} B_{2,2}\)
Task 09: \(C_{1,1} = D_{1,1,1} + D_{2,1,1}\) Task 10: \(C_{1,2} = D_{1,1,2} + D_{2,1,2}\)
Task 11: \(C_{2,1} = D_{1,2,1} + D_{2,2,1}\) Task 12: \(C_{2,2} = D_{1,2,2} + D_{2,2,2}\)
Intermediate Data Partitioning

- Example: dense matrix multiplication
 - Decomposition of intermediate data yields 8 + 4 tasks

<table>
<thead>
<tr>
<th>Task 01:</th>
<th>Task 02:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{1,1,1} = A_{1,1} B_{1,1}$</td>
<td>$D_{2,1,1} = A_{1,2} B_{2,1}$</td>
</tr>
<tr>
<td>Task 03:</td>
<td>Task 04:</td>
</tr>
<tr>
<td>$D_{1,1,2} = A_{1,1} B_{1,2}$</td>
<td>$D_{2,1,2} = A_{1,2} B_{2,2}$</td>
</tr>
<tr>
<td>Task 05:</td>
<td>Task 06:</td>
</tr>
<tr>
<td>$D_{1,2,1} = A_{2,1} B_{1,1}$</td>
<td>$D_{2,2,1} = A_{2,2} B_{2,1}$</td>
</tr>
<tr>
<td>Task 07:</td>
<td>Task 08:</td>
</tr>
<tr>
<td>$D_{1,2,2} = A_{2,1} B_{1,2}$</td>
<td>$D_{2,2,2} = A_{2,2} B_{2,2}$</td>
</tr>
<tr>
<td>Task 09:</td>
<td>Task 10:</td>
</tr>
<tr>
<td>$C_{1,1} = D_{1,1,1} + D_{2,1,1}$</td>
<td>$C_{1,2} = D_{1,1,2} + D_{2,1,2}$</td>
</tr>
<tr>
<td>Task 11:</td>
<td>Task 12:</td>
</tr>
<tr>
<td>$C_{2,1} = D_{1,2,1} + D_{2,2,1}$</td>
<td>$C_{2,2} = D_{1,2,2} + D_{2,2,2}$</td>
</tr>
</tbody>
</table>

- Task dependency graph
 - Higher concurrency than that of output data decomposition
The Owner Computes Rule

• Each process is assigned a particular data item
• Each process computes values associated with its assigned data item

• Implications
 – Input data decomposition
 • All computations that use the input data are performed by the process.
 – Output data decomposition
 • The output is computed by the process to which the output data is assigned.
Exploratory Decomposition

• Exploration (search) of a state space of solutions
• Problem decomposition reflects the exploration space
 – Partitioning exploration space results in concurrency
 – Decomposition usually happens on-demand during the execution of the algorithm

• Examples
 – Discrete optimization
 • 0/1 integer programming
 – Theorem proving
 – Game playing
Exploratory Decomposition

- Example: solving a 15 puzzle
 - Sequence of three moves from initial state to final state
Exploratory Decomposition

- Example: solving a 15 puzzle

![Diagram of exploratory decomposition for a 15 puzzle with initial and final states.](image-url)
Exploratory Decomposition Speedup

• Parallel formulation may change the amount of work performed
 – Can result in super- or sub-linear speedups

![Diagram showing the comparison between serial and parallel work]

Solution

- Total serial work: 2m+1
- Total parallel work: 1

- Total serial work: m
- Total parallel work: 4m
Speculative Decomposition

• Dependencies between tasks are not known a-priori
 – Making it impossible to identify independent tasks
• Conservative approach
 – Identify independent tasks only when they are guaranteed to not have dependencies
• Optimistic (speculative) approach
 – Schedule tasks even when they may potentially be erroneous
 – Ex) branch prediction in processor pipeline
• Drawbacks
 – Conservative approach may yield little concurrency
 – Speculative approach may require roll-back mechanism in the case of an error
Speculative Decomposition

• Example: discrete event simulation

• With a centralized time-ordered event list
 – Extract next event in time order
 – Process the event
 – If required, resulting events are inserted into the event list

• Optimistic event scheduling
 – Assume outcomes of all prior events
 – Speculatively process next event
 – If assumption is incorrect, roll back its effects and continue
Hybrid Decomposition

- Use a mix of decomposition techniques
- Example: Quicksort
 - Recursive decomposition alone limits concurrency
- Example: discrete event simulation
 - Some tasks have data-level concurrency
 - Mix speculative decomposition with data decomposition
- Example: find min
 - Data decomposition + recursive decomposition